
Towards the Development of a Problem Solver for
the Monitoring and Control of Instrumentation in a

Grid Environment

Tatiana Kalganova, Somjet Suppharangsan,
Russell Taylor, Mujtaba Alsaif

Francesco Lelli

School of Engineering and Design INFN
Brunel University National Laboratory of Legnaro

Uxbridge, UB8 3PH, United Kingdom Via Università 2, Legnaro, Italy
Tatiana.Kalganova@brunel.ac.uk Francesco.Lelli@lnl.infn.it

Abstract – This paper considers the issues involved in
developing a generic problem solver to be used within a grid
environment for the monitoring and control of
instrumentation. The specific feature of such an environment
is that the type of data to be processed, as well as the
problem, is not always known in advance. Therefore, it is
necessary to develop a problem solver architecture that will
address this issue. We propose to analyze the performance of
the problem solving algorithms available within the WEKA
toolkit and determine a decision tree of the best performing
algorithm for a given type of data. For this purpose the
algorithms have been tested using 51 datasets either drawn
from publicly available repositories or generated in a grid-
enabled environment.

I INTRODUCTION
The rapid development of grid-enabled services is mainly
driven by the need to use large computational resources in
such applications as meteorology, Human Proteome
Folding or the processing of medical data. While remote
control of, and data collection from, instrumentation was
part of the initial grid concept most recent grid
developments have been concentrated on the sharing of
distributed computational and storage resources.
In this scenario applications that need computational
power have just to use these grid elements in order to
access an unlimited amount of computational power and
disk storage. Existing grid architectures are therefore not
appropriate for applications incorporating real-time
measurements from instrumentation, where there is a need
for a strong interaction between the instrumentation and
the computational grid. GRIDCC, a European
Commission-funded project, is developing an architecture
and set of services that will enable the monitoring and
control of instrumentation in a grid environment [1], [2].
The importance of data mining services in grid
architectures have been highlighted in [3] and further
reviewed in [4]. A number of projects have been
established with the aim of implementing grid-enabled
data mining interfaces and services, where the major focus
was on the development of services for data grid
architectures. Examples of such projects include
GridMiner [5] and DataMiningGrid [6]. The introduction
of instrumentation into a grid architecture elicits a new role
for data mining in a grid environment, where the data
should be processed from at least two points of view: (1)
data processing and (2) the fault management of
instrumentation. In the second case, it should be noted that

different kinds of instrumentation will have completely
different ways of collecting information and that, in
contrast to a particular implementation of a classical grid,
this information will be markedly heterogeneous. This
makes it necessary to develop a problem solver with a
generic structure – in other words, a problem solver that is
able to process data efficiently irrespective of the size of
the processed dataset and its type.
The diverse roles of problem solvers, such as problem
recognition, definition and analysis, data management and
collection and solution development demonstrate the
complexity of developing a generic problem solver [7].
Moreover, in developing the problem solver we should
concentrate not only on processing and analysis techniques
but also on the development of explanation techniques [8].
We will refer to a generic problem solver as being a
problem solver that is capable of adapting to and solving a
generic problem [9]. One of the ways to approach the
development of a generic problem solver is to develop one
algorithm along with a technique to “fit” into the problem
domain, for example by utilizing the domain ontology
while acquiring human expert knowledge [10] or by
utilizing genetic programming principles [11]. The obvious
advantage of such an approach is in the use of just one
algorithm that is capable of solving a number of different
problems. At the same time, a significant disadvantage is
that its performance will vary depending on the problem
tackled. In order to avoid this disadvantage we propose to
develop an algorithm-based decision tree so that when
running the problem solver, the best performing algorithm
for a given data type will be chosen. Both problem-specific
and problem-generic algorithms will be able to participate
in the decision tree – it being an essential feature of the
GRIDCC architecture that the problem solver should be
flexible enough to include problem specific algorithms
should they exist. This can be easily achieved if the
WEKA environment [12] is utilised as the “container” for
such algorithms.
Therefore, the purpose of this paper is to investigate the
behaviour of the existing algorithms integrated into the
WEKA toolkit, and to analyse their behaviour using
various applications and data types. From the results
obtained, we aim to develop an algorithm-based decision
tree that selects the best performing algorithm for a given
type of data. The performance of the algorithms has been
tested based on datasets taken from publicly available

repositories, as well as several generated within a grid-
enabled environment.

II DATASETS
The 51 datasets have been collected from the UCI Machine
Learning Repository [13], from URLs [14], [15], and from
a grid CE (Compute Element) cluster at INFN (Istituto
Nazionale di Fisica Nucleare), Legnaro. The ‘grid’ datasets
have been incorporated in the benchmark analysis because,
like these, the data from instrumentation will typically be
unclassified datasets. The sizes of the datasets range from
36 instances to 67557 instances. They are divided into four
types, namely 1) small size and none-missing datasets, 2)
small size and missing datasets, 3) large size and none-
missing datasets and 4) large size and missing datasets. A
“none-missing” dataset is one where every attribute in
every instance contains a valid value, whereas in a dataset
described as “missing” some attributes of some instances
do not have valid values. The boundary separating small
and large datasets is 1000 instances, since the datasets vary
from tens to thousands of instances. Also, the class type
and type of attribute are employed to categorise the
datasets. There are 29 small supervised datasets, 16 large
supervised datasets, 2 datasets for regression (housing and
abalone), and 4 unsupervised datasets (those from the grid
cluster: grid700, grid1750, grid3500 and grid7000). Of the
29 small datasets, there are 17 small and none-missing
datasets, of which 8 have nominal (non-numeric) class and
numeric attribute, 3 nominal class and nominal attribute
and 6 nominal class and mixed (combination of numeric
and nominal) attribute, while there are 12 small and
missing datasets, of which 1 has nominal class and
numeric attribute, 2 nominal class and nominal attribute
and 9 nominal class and mixed attribute. Of the 16 large
datasets, there are 13 large and none-missing datasets, of
which 7 have nominal class and numeric attribute, 5
nominal class and nominal attribute and 1 nominal class
and mixed attribute, while there are 3 large and missing
datasets, of which 1 has nominal class and nominal
attribute and 2 have nominal class and mixed attribute.

III CLASSIFICATION
Databases can have nominal, numeric or mixed attributes
and classes. Not all classification algorithms perform well
for different types of attributes and classes as well as for
different size databases. In aiming to design a generic
classification tool, one should consider the behaviour of
various existing classification algorithms on different
datasets. WEKA is an excellent tool for such an
investigation since it can be easily integrated into
JavaScript and new algorithms can be added. Our aim at
this stage is to analyse the existing classification
algorithms implemented in the WEKA toolkit and define a
decision tree according to their performance. There exist
many classification algorithms [16] that can be classified
according to design methodology. Here we analyse the tree
and rule based classification algorithms provided in
WEKA [12]. Several tree and rule algorithms are applied
to each dataset and then evaluated for accuracy by using
10-cross-validation strategy [17]. 10-cross-validation (10-
CV) is a standard way of predicting the error rate. To
perform 10-CV a dataset is separated into ten

approximately equal portions, each of which is used in turn
for testing with the other nine being used for training
(meaning that ten iterations are performed in total).

A Tree Algorithms
Tree algorithms generate a model by constructing a tree
where each internal node is a feature or attribute. The leaf
nodes are class outputs. Each dataset is tested using the
following tree algorithms: ADTree [12], DecisionStump
[18], ID3 or Inductive Decision trees [19], J48 (which is
based on C4.5R8 algorithm [20] and the original C4.5
algorithm [21]), LMT (Logistic Model Trees) as developed
by Landwehr [22], M5P (originally called M5') according
to Holmes et al [23], NBTree or Naïve Bayes Trees created
by Holmes et al [23], RandomTree as explained by Tan in
[24] and its extension RandomForest [24], which simply
generates a specified number of RandomTrees and finally
REPTree [25].

B Rule Induction
Rule Induction algorithms generate a model as a set of
rules. The rules are in the form of standard IF-THEN rules.
Most rule algorithms rely on tree algorithms. Each dataset
is tested using the following rule algorithms:
ConjunctiveRule [26], which generates a single rule;
DecisionTable or DecisionTableMajority (DTM) [27];
JRip, which is based on Cohen’s RIPPER algorithm [28];
M5Rules, which generates rules using the M5' described in
[23]; NNge (Nearest Neighbour using Generalized
Exemplar) [29]; OneR based on the 1R algorithm [30];
PART, named because it uses a PARTial tree to generate
its knowledge base [31]; PRISM [32]; Ridor or Ripple
Down Rule learner [33] and finally ZeroR.

IV EXPERIMENTS AND RESULTS
The original datasets are converted to ARFF (Attribute
Relation File Format), this being the input file format for
WEKA. At this stage the dataset is ready for classification,
regression or clustering, depending on dataset’s
characteristics. Most of datasets fall under classification; a
few datasets, e.g. housing and abalone, fall under
regression. The datasets from the grid-enabled cluster
(grid700 etc.) are unsupervised and need to be clustered
before classifying. WEKA provides numerous
classification algorithms but only tree and rule algorithms
are used here because they have easily understandable
behaviour. The ten tree and ten rule algorithms identified
in section III are tested on each dataset with the option of
10-CV enabled. The results are represented as the average
accuracy over the ten iterations. Here we are interested in
the percentage of correctly classified instances of the
algorithms. The algorithms giving the most accurate
estimate, in other words the algorithms with the lowest
estimated error, are chosen. TABLE I shows the
algorithms that yield the highest accuracy results for each
of the small datasets whereas TABLE II shows the
algorithms that yield the highest accuracy results for each
of the large datasets. The first column is the criteria for
classifying the datasets: the type of class, i.e. nominal or
numeric, type of attribute, i.e. nominal, numeric or mixed,
as well as whether there is missing data, is taken into
account. The second column is the dataset name followed
by two numbers in parenthesis. The former is the number

of attributes and the latter is the number of instances. The
third and fourth columns are the chosen tree and rule
algorithms, respectively, including their corresponding
accuracy percentages. The last column is the best
algorithm overall, based on which one offers the highest
accuracy. For certain datasets, some algorithms are faced

with a memory problem in WEKA but other algorithms are
still able to deal with the classification in the datasets. The
problem normally occurs in datasets with large numbers of
instances or attributes. For such datasets, the candidate
algorithm given is the most accurate of those that were
able to run successfully.

TABLE I

RESULTS OF SMALL DATASETS

Tree (T) Rule Induction (R) Best Algorithms
Category

Datasets

Algorithms Per cent Algorithms Per cent Types Algorithms Per cent
iris(4,150) J48 96.00% NNge 96.00% T,R J48,Nnge 96.00%
bupa(6,345) RandomForest 68.99% NNge 66.67% T RandomForest 68.99%
pima-indians-
diabetes (8,768) LMT 77.47% JRip 75.13% T LMT 77.47%

glass(9,214) RandomForest,
REPTree 98.60% DecisionTable 98.13% T RandomForest,REPTree 98.60%

vehicle(18,846) LMT 82.98% PART 71.51% T LMT 82.98%
aminoacid(20,698) LMT 45.99% NNge 42.84% T LMT 45.99%
ionosphere(34,351) ADTree,LMT 93.16% PART 91.74% T ADTree,LMT 93.16%

Small None
Missing dataset
Nominal Class,

Numeric-
Attribute

sonar (60,208) RandomForest 80.77% PART 80.29% T RandomForest 80.77%

balance-scale(4,625) LMT 93.12% PART 77.28% T LMT 93.12%

tic-tac-toe(9,958) LMT 98.23% Ridor 99.69% R Ridor 99.69%

Small None
Missing dataset
Nominal Class,

Nominal-
Attribute spect(22,267) LMT 83.52% JRip 84.64% R Jrip 84.64%

tae(5,151) RandomTree 61.69% NNge 63.64% R NNge 63.64%
grub-damage(8,155) NBTree 46.45% OneR 41.94% T NBTree 46.45%
vowel(13,990) RandomForest 95.96% NNge 87.47% T RandomForest 95.96%
lymph(18,148) LMT 83.11% Ridor 85.14% R Ridor 85.14%

pasture(22,36) RandomForest 83.33% Ridor 83.33% T,R RandomForest,Ridor 83.33%

white-cover(31,63) LMT 71.43% Jrip 65.08% T LMT 71.43%

Small None
Missing dataset
Nominal Class,
Mixed attribute

grid700(154,700)* J48 92.57% PART 93.86% R PART 93.86%
Small None

Missing dataset
Numeric Class,

Numeric-
Attribute

housing(13,506) M5P 62.42% M5Ruls 60.16% T M5P 62.42%

Small and
Missing dataset
Nominal Class,

Numeric-
Attribute

breast cancer
wisconsin(9,699) NBTree 96.42%

 NNge 96.28%
 T NBTree 96.42%

breast cancer(9,286) LMT 76.22% OneR 78.32% R OneR 78.32% Small and
Missing dataset
Nominal Class,

Nominal-
Attribute

voting-
records(16,435)

LMT 96.55% NNge 96.09% T LMT 96.55%

post-operative(8,90) J48,LMT,REPTree 70.00% Ridor 71.11% R Ridor 71.11%

credit(15,690) J48 86.09% Jrip 85.80% T J48 86.09%

hepatitis(19,155) J48 83.87% PART 84.52% R PART 84.52%

eucalyptus(19,736) LMT 65.76% Jrip 61.01% T LMT 65.76%

colic(22,368) RandomForest 86.14% PART 84.78% T RandomForest 86.14%
squash-
unstored(23,52) J48 82.69% PART 80.77% T J48 82.69%

squash-stored(24,52) NBTree 73.08% PART 65.38% T NBTree 73.08%

autos(25,205) RandomForest 83.41% NNge 80.00% T RandomForest 83.41%

Small and
Missing dataset
Nominal Class,
Mixed Attribute

dermatology(34,366) LMT 97.54% NNge 96.17% T LMT 97.54%

TABLE II

RESULTS OF LARGE DATASETS

Tree (T) Rule Induction (R) Best Algorithms Categories

Datasets
Algorithms Per cent Algorithms Per cent Types Algorithms Per cent

shuttle(2) (9,14500) RandomForest 99.93% PART 99.89% T RandomForest 99.93%

shuttle(1) (9,43500) RandomForest 99.98% PART 99.97% T RandomForest 99.98%
page-Blocks
(10,5473)

NBTree,
RandomForest 97.24% PART 97.06% T NBTree, RandomForest 97.24%

letterrecognition
(16,20000)* RandomForest 94.46% PART 89.05% T RandomForest 94.46%

segment(19,2310) RandomForest 97.88% PART 96.28% T RandomForest 97.88%
segmentation
(19,2310) RandomForest 97.62% PART 96.45% T RandomForest 97.62%

Large and None
Missing dataset
Nominal Class,

Numeric-
Attribute

waveform(40,5000) LMT 86.96% JRip 79.20% T LMT 86.96%

car(6,1728) LMT 98.78% Ridor 96.30% T LMT 98.78%

krkopt(6,28056)* J48 56.58% PART 54.09% T J48 56.58%
nursery(8,12960)

LMT 98.99% PART 99.21% R PART 99.21%
connect-4(42,67557)*

 J48 80.97% PART 79.25% T J48 80.97%

Large and None
Missing dataset
Nominal Class,

Nominal-
Attribute

splice(61,3190)*
NBTree 95.30% JRip 94.45% T NBTree 95.30%

cmc(9,1473) LMT 53.02% DecisionTable 54.99% R DecisionTable 54.99%

grid1750(154,1750) * J48 94.06% PART 95.26% R PART 95.26%

grid3500(154,3500)* J48 98.51% JRip 98.91% R JRip 98.91%

Large and None
Missing dataset
Nominal Class,
Mixed Attribute

grid7000(154,7000)* J48 99.13% JRip 99.39% R JRip 99.39%

Large and None
Missing dataset
Numeric Class,
Mixed Attribute

abalone(8,4177) M5P 36.25% M5Rules 35.40% T M5P 36.25%

Large and
Missing dataset
Nominal Class,

Nominal-
Attribute

mushroom(22,8124) J48,NBTree,
RandomForest 100.00%

DecisionTable,
JRip,NNge,

PART
100.00% T,R

J48,NBTree,
RandomForest,
DecisionTable,

JRip,NNge,
PART

100.00%

sick-euthyroid
(25,3164) J48 97.88% Ridor 97.53% T J48 97.88% Large and

Missing dataset
Nominal Class,
Mixed Attribute

hypothyroid
(29,3772) J48,REPTree 99.58% Ridor 99.44% T J48,REPTree 99.58%

* “not enough memory” occurring in some algorithms

Figure 1
Diagram of Large and Missing datasets

Fig.1 shows a diagram of the large and missing datasets
using data from TABLE II. The diagram is similar to a
binary tree except that there is no restriction to only two
children nodes for each parent node. For instance, the type
of attribute node could have three children nodes: nominal,
numeric or mixed attribute. (Although there are no data
with numeric attributes in the large and missing datasets,
so Fig.1 shows only nominal and mixed attributes in the
diagram.) To begin with, we consider if there is missing
data or not in the dataset. Then the type of class in the
dataset is considered: numeric or nominal. In this example,
all large datasets are categorised to have nominal class. At
this stage, there are three nominal class datasets, namely
mushroom, sick-euthyroid and hypothyroid. These datasets
are then classified by type of attribute. Mushroom is
classified to have nominal attribute while sick-euthyroid,
and hypothyroid fall into mixed attribute. There are many
algorithms yielding 100% accuracy for the mushroom
dataset such as J48, NBTree, RandomForest,
DecisionTable, JRip, NNge, and PART. The J48 algorithm
is the best algorithm for both the sick-euthyroid and
hypothyroid datasets, while the REPTree algorithm also
gives the same accuracy for the hypothyroid dataset.
Therefore, J48 is likely to be the candidate algorithm for
the large and missing datasets. Similar diagrams for small
and missing or none-missing datasets, and for large and
none-missing datasets, can be drawn using data from
TABLES I & II, in the same way as described above.

V CONCLUSIONS
Most of the datasets in the GRIDCC environment will be
nominal class. The LMT and RandomForest algorithms are
likely to be selected for small datasets with nominal class.
For numeric class, M5P is likely to be the best candidate
algorithm as a result of a few numeric regression
algorithms implemented in the experiments. Tree
algorithms are more likely to be chosen than rule
algorithms. In this investigation, most tree algorithms give
more accurate results than rule algorithms in none-missing
datasets with nominal class and numeric attribute. For this
kind of small dataset, LMT and RandomForest are often
chosen, whereas RandomForest is often chosen for the
same kind of large dataset. However, tree and rule
algorithms seem equally likely to be selected for small and
none-missing datasets with nominal class and nominal or
mixed attribute. Nonetheless, there is a “not enough
memory” problem occurring in some datasets while
running certain algorithms. Therefore, the error rates of
these algorithms cannot be measured and compared.
The results show that there is no single best algorithm to
beat all others in all situations. In some cases there might
be, depending on the characteristics of the data. There are
some algorithms that seem to be good candidates in some
general cases, as mentioned in the above discussion. To
choose a suitable algorithm, a domain expert or expert
system may employ the results of the classification in
order to make better decisions.

ACKNOWLEDGMENT
This project is supported under EU FP6 contract 511382.

REFERENCES
[1] K H Darby-Dowman et al., “GRIDCC - Bringing instrumentation

(back) onto the Grid,” Conference on Computing in High Energy &
Nuclear Physics (CHEP), Mumbai, 13-17 February 2006

[2] “GRIDCC – Grid Enabled Remote Instrumentation with Distributed
Control and Computation,” http://www.gridcc.org

[3] A.K.T.P. Au, V. Curcin et al., “Why grid-based data mining
matters? fighting natural disasters on the grid: from SARS to land
slides,” In S.J. Cox (Ed.), UK e-science all-hands meeting (AHM
2004), Nottingham, UK, September 2004, EPSRC, 2004, pp 121 -
126

[4] P. Brezany, I. Janciak and A Min Tjoa, “Data Mining on the Grid:
Perspective from the GridMiner Experience,” 5th Cracow Grid
Workshop, Poland, November 21-23, 2005

[5] P. Brezany, I. Janciak and A Min Tjoa, “GridMiner: A Fundamental
Infrastructure for Building Intelligent Grid Systems,” The 2005
IEEE/WIC/ACM Int. Conf. on Web Intelligence (WI'05), pp. 150-
156

[6] “Data Mining Tools and Services for Grid Computing
Environments,” http://www.datamininggrid.org

[7] L.M. Taylor, “Much Ado About Nothing: The Problem With
Problem-Solving,” The College Quarterly, Seneca College of
Applied Arts and Technology, 1994 – Vol. 2 (1)

[8] Vladia Pinheiro, Vasco Furtado, Paulo Pinheiro da Silva and
Deborah L. McGuinness, “Explaining Problem Solver Answers,”
Technical Report KSL-05-02, Knowledge Systems Laboratory,
Stanford University, USA, 2005.

[9] D. Mann, “The Space Between ‘Generic’ and ‘Specific’ Problem
Solutions,” The TRIZ Journal 2001 Vol. 6

[10] G. Beydoun and A. Hoffmann, “Building Problem Solvers Based on
Search Control Knowledge,” Knowledge Acquisition Workshop
(KAW’98)

[11] A. Grigoryan, D. Kalina and J. Spiegel, “The Generic Genetic
Problem Solver,”
http://www.cs.columbia.edu/~evs/ais/finalprojs/kalina/

[12] I. H. Witten and E. Frank, “Data Mining: Practical machine learning
tools and techniques,” 2nd edition, Morgan Kaufmann, San
Francisco, 2005

[13] UCI Machine Learning Repository,
http://www.ics.uci.edu/~mlearn/MLRepository.html,

Accessed: 5 Dec 2005
[14] S. Ji, Computational Biology,

http://www.csc.lsu.edu/~ji/compbio/index.htm, Accessed: 5 Dec
2005

[15] Collection of datasets
http://www.cs.waikato.ac.nz/~ml/weka/index_datasets.html,
Accessed: 5 Dec 2005

[16] A. Küçükyılmaz, "Pattern Classification: A Survey and
Comparison,"
http://www.cs.bilkent.edu.tr/~guvenir/courses/cs550/Workshop/Ay
se_Kucukyilmaz.pdf, Accessed: 15 Feb 2006

[17] R. R. Boukaert, "Choosing between two learning algorithms based
on calibrated tests," In T. Fawcett and N. Mishra (eds.) Proc. of
20th Int. Conf. on Machine Learning, 2003, pp. 51-58

[18] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes and S.J.
Cunningham, "Weka: Practical machine learning tools and
techniques with Java implementations," In Kasabov, Nikola and
Kitty Ko (eds.) Proc ICONIP/ANZIIS/ANNES’99 Int. Workshop:
Emerging Knowledge Engineering and Connectionist-Based
Information Systems, Dunedin, New Zealand, Nov. 1999, pp. 192-
196

[19] J. R. Quinlan, "Discovering rules by induction from large numbers
of examples: a case study," In D. Michie, editor, Expert systems in
the microelectronic age, Edinburgh University Press, 1979

[20] Decision Trees for Supervised Learning, Toolshed Manual,
http://grb.mnsu.edu/grbts/doc/manual/J48_Decision_Trees.html,
Accessed: 8 Sep 2005

[21] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Mateo, CA: 1993

[22] N. Landwehr, M. Hall and E. Frank, "Logistic model trees," in Proc.
of the 14th European Conf. on Machine Learning, LNCS 2837,
Cavtat-Dubrovnik, Croatia, 2003, pp. 241-252, edited by N.
Lavrac, et al. Springer-Verlag, Berlin

[23] G. Holmes, M. Hall and E. Frank, "Generating Rule Sets from
Model Trees," in Proc. of the 12th Australian Joint Conf. on
Artificial Intelligence, Sydney, Australia, Springer-Verlag, pp. 1-12

[24] Y. F. Tan, "Corpus Based Identification of Light Verb
Constructions," Undergraduate Thesis, School of Computing,

National University of Singapore
[25] Class REPTree, Weka Toolkit API Documentation,

http://alex.seewald.at/WEKA/doc_gui/weka/classifiers/trees/REPT
ree.html, Accessed: 8 Sep 2005

[26] Class ConjunctiveRule, Weka Toolkit API Documentation,
http://weka.sourceforge.net/doc/weka/classifiers/rules/Conjunctive
Rule.html, Accessed: 29 Jul 2005

[27] R. Kohavi, "The Power of Decision Tables," in Proc.s of the 8th
European Conf. on Machine Learning, 1995, pp. 174-189

[28] W. Cohen, "Fast effective rule induction," in Pro. of the 12th Int.
Conf. on Machine Learning, Tahoe City, CA, July 1995, pp. 115-
123

[29] B. Martin "Instance-Based learning: Nearest Neighbor With
Generalization," Masters Thesis, University of Waikato, Hamilton,
New Zealand

[30] R.C. Holte, "Very Simple classification rules perform well on most
commonly used datasets," Machine Learning, Vol. 11, 1993, pp.
63-91

[31] E. Frank and I.H. Witten, "Generating accurate rule sets without
global optimization," in Proc Int. Conf. on Machine Learning,
Madison, Wisconsin, 1998, pp. 144-151

[32] G. Parker, Pseudo-code for Prism, Classification Algorithms,
COM307: Machine Learning and Data Mining,
http://cs.conncoll.edu/com307/lectureslides/DM4c.ppt#283,17,Pse
udo-code for PRISM, Accessed: 11 Aug 2005

[33] B. Gaines and P. Compton, "Induction of ripple-down rules applied
to modeling large database," Journal of Intelligent Information
Systems, Vol. 3, No. 3, 1995, pp. 211-228

