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Abstract – This paper considers the issues involved in 
developing a generic problem solver to be used within a grid 
environment for the monitoring and control of 
instrumentation. The specific feature of such an environment 
is that the type of data to be processed, as well as the 
problem, is not always known in advance. Therefore, it is 
necessary to develop a problem solver architecture that will 
address this issue. We propose to analyze the performance of 
the problem solving algorithms available within the WEKA 
toolkit and determine a decision tree of the best performing 
algorithm for a given type of data. For this purpose the 
algorithms have been tested using 51 datasets either drawn 
from publicly available repositories or generated in a grid-
enabled environment. 

I INTRODUCTION 
The rapid development of grid-enabled services is mainly 
driven by the need to use large computational resources in 
such applications as meteorology, Human Proteome 
Folding or the processing of medical data. While remote 
control of, and data collection from, instrumentation was 
part of the initial grid concept most recent grid 
developments have been concentrated on the sharing of 
distributed computational and storage resources. 
In this scenario applications that need computational 
power have just to use these grid elements in order to 
access an unlimited amount of computational power and 
disk storage. Existing grid architectures are therefore not 
appropriate for applications incorporating real-time 
measurements from instrumentation, where there is a need 
for a strong interaction between the instrumentation and 
the computational grid. GRIDCC, a European 
Commission-funded project, is developing an architecture 
and set of services that will enable the monitoring and 
control of instrumentation in a grid environment [1], [2].  
The importance of data mining services in grid 
architectures have been highlighted in [3] and further 
reviewed in [4]. A number of projects have been 
established with the aim of implementing grid-enabled 
data mining interfaces and services, where the major focus 
was on the development of services for data grid 
architectures. Examples of such projects include 
GridMiner [5] and DataMiningGrid [6]. The introduction 
of instrumentation into a grid architecture elicits a new role 
for data mining in a grid environment, where the data 
should be processed from at least two points of view: (1) 
data processing and (2) the fault management of 
instrumentation. In the second case, it should be noted that 

different kinds of instrumentation will have completely 
different ways of collecting information and that, in 
contrast to a particular implementation of a classical grid, 
this information will be markedly heterogeneous. This 
makes it necessary to develop a problem solver with a 
generic structure – in other words, a problem solver that is 
able to process data efficiently irrespective of the size of 
the processed dataset and its type. 
The diverse roles of problem solvers, such as problem 
recognition, definition and analysis, data management and 
collection and solution development demonstrate the 
complexity of developing a generic problem solver [7]. 
Moreover, in developing the problem solver we should 
concentrate not only on processing and analysis techniques 
but also on the development of explanation techniques [8].  
We will refer to a generic problem solver as being a 
problem solver that is capable of adapting to and solving a 
generic problem [9]. One of the ways to approach the 
development of a generic problem solver is to develop one 
algorithm along with a technique to “fit” into the problem 
domain, for example by utilizing the domain ontology 
while acquiring human expert knowledge [10] or by 
utilizing genetic programming principles [11]. The obvious 
advantage of such an approach is in the use of just one 
algorithm that is capable of solving a number of different 
problems. At the same time, a significant disadvantage is 
that its performance will vary depending on the problem 
tackled. In order to avoid this disadvantage we propose to 
develop an algorithm-based decision tree so that when 
running the problem solver, the best performing algorithm 
for a given data type will be chosen. Both problem-specific 
and problem-generic algorithms will be able to participate 
in the decision tree – it being an essential feature of the 
GRIDCC architecture that the problem solver should be 
flexible enough to include problem specific algorithms 
should they exist. This can be easily achieved if the 
WEKA environment [12] is utilised as the “container” for 
such algorithms.  
Therefore, the purpose of this paper is to investigate the 
behaviour of the existing algorithms integrated into the 
WEKA toolkit, and to analyse their behaviour using 
various applications and data types. From the results 
obtained, we aim to develop an algorithm-based decision 
tree that selects the best performing algorithm for a given 
type of data. The performance of the algorithms has been 
tested based on datasets taken from publicly available 



 

repositories, as well as several generated within a grid-
enabled environment. 

II DATASETS 
The 51 datasets have been collected from the UCI Machine 
Learning Repository [13], from URLs [14], [15], and from 
a grid CE (Compute Element) cluster at INFN (Istituto 
Nazionale di Fisica Nucleare), Legnaro. The ‘grid’ datasets 
have been incorporated in the benchmark analysis because, 
like these, the data from instrumentation will typically be 
unclassified datasets. The sizes of the datasets range from 
36 instances to 67557 instances. They are divided into four 
types, namely 1) small size and none-missing datasets, 2) 
small size and missing datasets, 3) large size and none-
missing datasets and 4) large size and missing datasets. A 
“none-missing” dataset is one where every attribute in 
every instance contains a valid value, whereas in a dataset 
described as “missing” some attributes of some instances 
do not have valid values. The boundary separating small 
and large datasets is 1000 instances, since the datasets vary 
from tens to thousands of instances. Also, the class type 
and type of attribute are employed to categorise the 
datasets. There are 29 small supervised datasets, 16 large 
supervised datasets, 2 datasets for regression (housing and 
abalone), and 4 unsupervised datasets (those from the grid 
cluster: grid700, grid1750, grid3500 and grid7000). Of the 
29 small datasets, there are 17 small and none-missing 
datasets, of which 8 have nominal (non-numeric) class and 
numeric attribute, 3 nominal class and nominal attribute 
and 6 nominal class and mixed (combination of numeric 
and nominal) attribute, while there are 12 small and 
missing datasets, of which 1 has nominal class and 
numeric attribute, 2 nominal class and nominal attribute 
and 9 nominal class and mixed attribute. Of the 16 large 
datasets, there are 13 large and none-missing datasets, of 
which 7 have nominal class and numeric attribute, 5 
nominal class and nominal attribute and 1 nominal class 
and mixed attribute, while there are 3 large and missing 
datasets, of which 1 has nominal class and nominal 
attribute and 2 have nominal class and mixed attribute. 

III CLASSIFICATION 
Databases can have nominal, numeric or mixed attributes 
and classes. Not all classification algorithms perform well 
for different types of attributes and classes as well as for 
different size databases. In aiming to design a generic 
classification tool, one should consider the behaviour of 
various existing classification algorithms on different 
datasets. WEKA is an excellent tool for such an 
investigation since it can be easily integrated into 
JavaScript and new algorithms can be added. Our aim at 
this stage is to analyse the existing classification 
algorithms implemented in the WEKA toolkit and define a 
decision tree according to their performance. There exist 
many classification algorithms [16] that can be classified 
according to design methodology. Here we analyse the tree 
and rule based classification algorithms provided in 
WEKA [12]. Several tree and rule algorithms are applied 
to each dataset and then evaluated for accuracy by using 
10-cross-validation strategy [17]. 10-cross-validation (10-
CV) is a standard way of predicting the error rate. To 
perform 10-CV a dataset is separated into ten 

approximately equal portions, each of which is used in turn 
for testing with the other nine being used for training 
(meaning that ten iterations are performed in total).  

A Tree Algorithms 
Tree algorithms generate a model by constructing a tree 
where each internal node is a feature or attribute. The leaf 
nodes are class outputs. Each dataset is tested using the 
following tree algorithms: ADTree [12], DecisionStump 
[18], ID3 or Inductive Decision trees [19], J48 (which is 
based on C4.5R8 algorithm [20] and the original C4.5 
algorithm [21]), LMT (Logistic Model Trees) as developed 
by Landwehr [22], M5P (originally called M5') according 
to Holmes et al [23], NBTree or Naïve Bayes Trees created 
by Holmes et al [23], RandomTree as explained by Tan in 
[24] and its extension RandomForest [24], which simply 
generates a specified number of RandomTrees and finally 
REPTree [25]. 

B Rule Induction 
Rule Induction algorithms generate a model as a set of 
rules. The rules are in the form of standard IF-THEN rules. 
Most rule algorithms rely on tree algorithms. Each dataset 
is tested using the following rule algorithms: 
ConjunctiveRule [26], which generates a single rule; 
DecisionTable or DecisionTableMajority (DTM) [27]; 
JRip, which is based on Cohen’s RIPPER algorithm [28]; 
M5Rules, which generates rules using the M5' described in 
[23]; NNge (Nearest Neighbour using Generalized 
Exemplar) [29]; OneR based on the 1R algorithm [30]; 
PART, named because it uses a PARTial tree to generate 
its knowledge base [31]; PRISM [32]; Ridor or Ripple 
Down Rule learner [33] and finally ZeroR. 

IV EXPERIMENTS AND RESULTS 
The original datasets are converted to ARFF (Attribute 
Relation File Format), this being the input file format for 
WEKA. At this stage the dataset is ready for classification, 
regression or clustering, depending on dataset’s 
characteristics. Most of datasets fall under classification; a 
few datasets, e.g. housing and abalone, fall under 
regression. The datasets from the grid-enabled cluster 
(grid700 etc.) are unsupervised and need to be clustered 
before classifying. WEKA provides numerous 
classification algorithms but only tree and rule algorithms 
are used here because they have easily understandable 
behaviour. The ten tree and ten rule algorithms identified 
in section III are tested on each dataset with the option of 
10-CV enabled. The results are represented as the average 
accuracy over the ten iterations. Here we are interested in 
the percentage of correctly classified instances of the 
algorithms. The algorithms giving the most accurate 
estimate, in other words the algorithms with the lowest 
estimated error, are chosen. TABLE I shows the 
algorithms that yield the highest accuracy results for each 
of the small datasets whereas TABLE II shows the 
algorithms that yield the highest accuracy results for each 
of the large datasets. The first column is the criteria for 
classifying the datasets: the type of class, i.e. nominal or 
numeric, type of attribute, i.e. nominal, numeric or mixed, 
as well as whether there is missing data, is taken into 
account. The second column is the dataset name followed 
by two numbers in parenthesis. The former is the number 



 

of attributes and the latter is the number of instances. The 
third and fourth columns are the chosen tree and rule 
algorithms, respectively, including their corresponding 
accuracy percentages. The last column is the best 
algorithm overall, based on which one offers the highest 
accuracy. For certain datasets, some algorithms are faced 

with a memory problem in WEKA but other algorithms are 
still able to deal with the classification in the datasets. The 
problem normally occurs in datasets with large numbers of 
instances or attributes. For such datasets, the candidate 
algorithm given is the most accurate of those that were 
able to run successfully. 

TABLE I 

RESULTS OF SMALL DATASETS 
 

Tree (T) Rule Induction (R) Best Algorithms 
Category 

 
Datasets 

Algorithms Per cent Algorithms Per cent Types Algorithms Per cent 
iris(4,150) J48 96.00% NNge 96.00% T,R J48,Nnge 96.00% 
bupa(6,345) RandomForest 68.99% NNge 66.67% T RandomForest 68.99% 
pima-indians-
diabetes (8,768) LMT 77.47% JRip 75.13% T LMT 77.47% 

glass(9,214) RandomForest, 
REPTree 98.60% DecisionTable 98.13% T RandomForest,REPTree 98.60% 

vehicle(18,846) LMT 82.98% PART 71.51% T LMT 82.98% 
aminoacid(20,698) LMT 45.99% NNge 42.84% T LMT 45.99% 
ionosphere(34,351) ADTree,LMT 93.16% PART 91.74% T ADTree,LMT 93.16% 

Small None 
Missing dataset 
Nominal Class, 

Numeric- 
Attribute 

sonar (60,208) RandomForest 80.77% PART 80.29% T RandomForest 80.77% 

balance-scale(4,625) LMT 93.12% PART 77.28% T LMT 93.12% 

tic-tac-toe(9,958) LMT 98.23% Ridor 99.69% R Ridor 99.69% 

Small None 
Missing dataset 
Nominal Class, 

Nominal- 
Attribute spect(22,267) LMT 83.52% JRip 84.64% R Jrip 84.64% 

tae(5,151) RandomTree 61.69% NNge 63.64% R NNge 63.64% 
grub-damage(8,155) NBTree 46.45% OneR 41.94% T NBTree 46.45% 
vowel(13,990) RandomForest 95.96% NNge 87.47% T RandomForest 95.96% 
lymph(18,148) LMT 83.11% Ridor 85.14% R Ridor 85.14% 

pasture(22,36) RandomForest 83.33% Ridor 83.33% T,R RandomForest,Ridor 83.33% 

white-cover(31,63) LMT 71.43% Jrip 65.08% T LMT 71.43% 

Small None 
Missing dataset 
Nominal Class, 
Mixed attribute 

grid700(154,700)* J48 92.57% PART 93.86% R PART 93.86% 
Small None 

Missing dataset 
Numeric Class, 

Numeric- 
Attribute 

housing(13,506) M5P 62.42% M5Ruls 60.16% T M5P 62.42% 

Small and 
Missing dataset 
Nominal Class, 

Numeric- 
Attribute 

breast cancer 
wisconsin(9,699) NBTree 96.42% 

 NNge 96.28% 
 T NBTree 96.42% 

breast cancer(9,286) LMT 76.22% OneR 78.32% R OneR 78.32% Small and 
Missing dataset 
Nominal Class, 

Nominal- 
Attribute 

voting-
records(16,435) 

LMT 96.55% NNge 96.09% T LMT 96.55% 

post-operative(8,90) J48,LMT,REPTree 70.00% Ridor 71.11% R Ridor 71.11% 

credit(15,690) J48 86.09% Jrip 85.80% T J48 86.09% 

hepatitis(19,155) J48 83.87% PART 84.52% R PART 84.52% 

eucalyptus(19,736) LMT 65.76% Jrip 61.01% T LMT 65.76% 

colic(22,368) RandomForest 86.14% PART 84.78% T RandomForest 86.14% 
squash-
unstored(23,52) J48 82.69% PART 80.77% T J48 82.69% 

squash-stored(24,52) NBTree 73.08% PART 65.38% T NBTree 73.08% 

autos(25,205) RandomForest 83.41% NNge 80.00% T RandomForest 83.41% 

Small and 
Missing dataset 
Nominal Class, 
Mixed Attribute 

dermatology(34,366) LMT 97.54% NNge 96.17% T LMT 97.54% 



 

TABLE II 

RESULTS OF LARGE DATASETS 
 

Tree (T) Rule Induction (R) Best Algorithms Categories 
 

Datasets 
Algorithms Per cent Algorithms Per cent Types Algorithms Per cent 

shuttle(2) (9,14500) RandomForest 99.93% PART 99.89% T RandomForest 99.93% 

shuttle(1) (9,43500) RandomForest 99.98% PART 99.97% T RandomForest 99.98% 
page-Blocks 
(10,5473) 

NBTree, 
RandomForest 97.24% PART 97.06% T NBTree, RandomForest 97.24% 

letterrecognition 
(16,20000)* RandomForest 94.46% PART 89.05% T RandomForest 94.46% 

segment(19,2310) RandomForest 97.88% PART 96.28% T RandomForest 97.88% 
segmentation 
(19,2310) RandomForest 97.62% PART 96.45% T RandomForest 97.62% 

Large and None 
Missing dataset 
Nominal Class, 

Numeric- 
Attribute 

waveform(40,5000) LMT 86.96% JRip 79.20% T LMT 86.96% 

car(6,1728) LMT 98.78% Ridor 96.30% T LMT 98.78% 

krkopt(6,28056)* J48 56.58% PART 54.09% T J48 56.58% 
nursery(8,12960) 

LMT 98.99% PART 99.21% R PART 99.21% 
connect-4(42,67557)*

 J48 80.97% PART  79.25% T  J48  80.97% 

Large and None 
Missing dataset 
Nominal Class, 

Nominal- 
Attribute 

splice(61,3190)* 
NBTree 95.30% JRip 94.45% T NBTree 95.30% 

cmc(9,1473) LMT 53.02% DecisionTable 54.99% R DecisionTable 54.99% 

grid1750(154,1750) * J48 94.06% PART 95.26% R PART 95.26% 

grid3500(154,3500)* J48 98.51% JRip 98.91% R JRip 98.91% 

Large and None 
Missing dataset 
Nominal Class, 
Mixed Attribute 

grid7000(154,7000)* J48 99.13% JRip 99.39% R JRip 99.39% 

Large and None 
Missing dataset 
Numeric Class, 
Mixed Attribute 

abalone(8,4177) M5P 36.25% M5Rules 35.40% T M5P 36.25% 

Large and 
Missing dataset 
Nominal Class, 

Nominal- 
Attribute 

mushroom(22,8124) J48,NBTree, 
RandomForest 100.00%

DecisionTable,
JRip,NNge, 

PART 
100.00% T,R 

J48,NBTree, 
RandomForest, 
DecisionTable, 

JRip,NNge, 
PART 

100.00% 

sick-euthyroid 
(25,3164) J48 97.88% Ridor 97.53% T J48 97.88% Large and 

Missing dataset 
Nominal Class, 
Mixed Attribute 

hypothyroid 
(29,3772) J48,REPTree 99.58% Ridor 99.44% T J48,REPTree 99.58% 

* “not enough memory” occurring in some algorithms  
 

 
 

Figure 1 
Diagram of Large and Missing datasets 



 

Fig.1 shows a diagram of the large and missing datasets 
using data from TABLE II. The diagram is similar to a 
binary tree except that there is no restriction to only two 
children nodes for each parent node. For instance, the type 
of attribute node could have three children nodes: nominal, 
numeric or mixed attribute. (Although there are no data 
with numeric attributes in the large and missing datasets, 
so Fig.1 shows only nominal and mixed attributes in the 
diagram.) To begin with, we consider if there is missing 
data or not in the dataset. Then the type of class in the 
dataset is considered: numeric or nominal. In this example, 
all large datasets are categorised to have nominal class.  At 
this stage, there are three nominal class datasets, namely 
mushroom, sick-euthyroid and hypothyroid. These datasets 
are then classified by type of attribute. Mushroom is 
classified to have nominal attribute while sick-euthyroid, 
and hypothyroid fall into mixed attribute. There are many 
algorithms yielding 100% accuracy for the mushroom 
dataset such as J48, NBTree, RandomForest, 
DecisionTable, JRip, NNge, and PART. The J48 algorithm 
is the best algorithm for both the sick-euthyroid and 
hypothyroid datasets, while the REPTree algorithm also 
gives the same accuracy for the hypothyroid dataset. 
Therefore, J48 is likely to be the candidate algorithm for 
the large and missing datasets.  Similar diagrams for small 
and missing or none-missing datasets, and for large and 
none-missing datasets, can be drawn using data from 
TABLES I & II, in the same way as described above. 

V CONCLUSIONS 
Most of the datasets in the GRIDCC environment will be 
nominal class. The LMT and RandomForest algorithms are 
likely to be selected for small datasets with nominal class. 
For numeric class, M5P is likely to be the best candidate 
algorithm as a result of a few numeric regression 
algorithms implemented in the experiments. Tree 
algorithms are more likely to be chosen than rule 
algorithms. In this investigation, most tree algorithms give 
more accurate results than rule algorithms in none-missing 
datasets with nominal class and numeric attribute. For this 
kind of small dataset, LMT and RandomForest are often 
chosen, whereas RandomForest is often chosen for the 
same kind of large dataset. However, tree and rule 
algorithms seem equally likely to be selected for small and 
none-missing datasets with nominal class and nominal or 
mixed attribute. Nonetheless, there is a “not enough 
memory” problem occurring in some datasets while 
running certain algorithms. Therefore, the error rates of 
these algorithms cannot be measured and compared. 
The results show that there is no single best algorithm to 
beat all others in all situations. In some cases there might 
be, depending on the characteristics of the data. There are 
some algorithms that seem to be good candidates in some 
general cases, as mentioned in the above discussion. To 
choose a suitable algorithm, a domain expert or expert 
system may employ the results of the classification in 
order to make better decisions. 
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