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Abstract. In the past few years, the idea of extending the Grid to cover
also the remote access, control, management of instrument devices has
been explored in a few initiatives. Existing tools lack in generality and
require advanced specialized computer science knowledge, thus making
them difficult to be broadly adopted in the scientific community. In this
paper we present a new open source initiative that is designed to over-
come these problems. The Tiny Instrument Element project defines a
high level architecture for plugging instruments into the Grid and pro-
vides the corresponding skeleton implementation. This lightweight ap-
proach, as opposed to existing middleware-based solutions, reduces the
effort required to Gridify existing instruments. The paper evaluates the
proposed abstraction with a case study from a pervasive computing sce-
nario.

1 Introduction

The term Grid refers to a set of technologies for sharing and accessing storage
space and computational power. Additionally, the desire to access, control, and
acquire data from pervasive, widely-networked and distributed instruments re-
flects the need to include such scientific equipment as sensors and probes directly
into the Grid. In previous works ([1], [2]) we defined the term Instrument Ele-
ment (IE) as a set of services that provide the remote control and monitoring
of physical instruments. In Grid terminology the words “instrument”, “sensor”,
“actuator”, and “device” are synonyms used to identify any piece of equipment
that needs to be initialized, configured, calibrated, operated (with commands
such as start, stop, standby, resume, reset), and monitored. Unlike the classical
computing infrastructure composed of the Computing Element (CE) and the
Storage Element (SE), the IE must be accessed using interactive computational
job execution and usually requires a tightly coupled interaction with the users.
In the past few years, the concept of Instrument Element and its definition
has been adopted by few international cooperations (GridCC [3], RINGrid [4],
DORII [5]). Not only complex instruments such as High Energy Physics experi-
ments require a direct access to computational infrastructure. In this paper we
consider additional use case scenarios where instruments:



– are large in number.
– are widely distributed.
– have a highly dynamic behavior: for instance they often go on and off or can

appear and disappear in a working net of sensors or probes.
– operate in embedded systems with low resources: for example FPGA based

instrumentation.

Some example application domains that would require such widely sparse instru-
mentation are: (i) power grids, (ii) territory monitoring: to prevent geo-hazardous
situations and detect forest fires, (iii) sea monitoring: for tsunami surveillance
for example, (iv) distributed laboratories, (v) transportation remote control and
monitoring.

Whereas in these applications a single device may not produce an amount
of data comparable with the one produced by high-energy physics experiments,
including such large collection of devices in the Grid can be very useful to run
complex data processing and leverage the available distributed storage facilities.
This way, the data produced by the sensor equipment may be directly and con-
tinuosly stored in a distributed storage system, making it possible to submit
analysis jobs on the Grid as new data arrives.

In order to address the requirements of these usage scenarios, a new ver-
sion of the Instrument Element is needed, since the complexity of the current
middleware makes it very expensive and difficult to adopt by third party sci-
entific institutions, end-users or programmers that have expressed an interested
to use it for these applications. In this paper we present the Tiny Instrument
Element project [6], which aims a developing a light-weight implementation of
similar concepts. However, it uses a template-based approach based on widely
adopted technology as opposed to a plug-in based middleware. Moreover, the
project iself is developed according to the Web 2.0 open colleboration paradigm,
in order to provide transparent access to the development and spur the growth
of a large user and developer community. The Tiny Instrument Element Project
[6] has started as a simplification of the code for the Run Control of the Com-
pact Muon Solenoid (CMS) experiment at CERN [7] and now the first stable
release is available for download. The rest of this paper is structured as follows:
Section 2 presents a classification of related work and discusses its main limita-
tions. Section 3 outlines the principles guiding the design of the Tiny Instrument
Element. Section 4 introduces the architecture of the Tiny Instrument Element
from a technical point of view. The case study presented in Section 5 is used
to validate the present implementation. Section 6 concludes the paper with a
discussion of the project roadmap.

2 Related Work

The goal is to produce a middleware that can act as glue between devices allowing
their abstraction for making them accessible on the Grid. If we try to classify
these efforts we can distinguish two levels of abstraction:



– Low Level: these provide general interfaces and mechanisms therefore they
are very flexible but incomplete. A significant effort by developers is required
in order to build an artifact design for a particular kind of instrument.

– High Level: these give management interfaces more specific to the domain
of instrument control. However, they are less applicable to a large variety of
instruments and they may require complex configuration. Still, less develop-
ment effort is required in order to support a specific instrument.

In the first category (low level) we find the following: A WS-* based stan-
dard, WS-Notification [8], describes asynchronous publish/subscribe notification
protocols that can be used for listening to remote service data element updates
representing the state of a Grid-enabled instrument. The WSRF framework such
as OGSA [9], [10], Apache-WSRF [11] and WSRF.NET [12] implement this
standard. The Java Management Extensions (JMX) [13] technology is an open
system for management and monitoring. Via its Instrumentation, Agent, and
Distributed Services layers, this standard can be used for implementing manage-
ment tools, and providing monitoring solutions. Jini [14] provides mechanisms to
enable adding, removing, and locating devices and services on the network. The
Java Message Service (JMS) define a common set of publish/subscribe APIs [15]
that allow different peers of a distributed system to communicate using messages
or data streams.

In category ”high level” we find CIMA [16] and the Instrument Element (IE)
[1], [2]. CIMA proposes a common instrument middleware based on Web Services
using SOAP over HTTP as a communication layer and specific WSDL interfaces.
The first reliable implementation of the IE has been provided by the GridCC
project [3] and then few additional implementations have followed [17], [5]. Built
on high level middleware that can fit in all possible use case, the integration
of IE require not trivial efforts because each specific use case is not perfectly
covered by the middleware itself.

In this paper we present another implementation of the Instrument Element
concept. In the design of this version we tried to take the benefits of both high
and low abstraction levels in order to create a transparent, open source project,
independent from any particular initiative. As we will describe in the next sec-
tion, instead of building yet another middleware framework, we propose to use
a semi-finite artifact (i.e., a skeleton software) that can be extended, tailored,
and customized in order meet the requirements of a specific use case. As we will
show in our case study, this approach grants more flexibility and reusability than
existing high level solutions. Also, it does not suffer from the generality of low
level solutions, as it is designed around the instrument abstraction.

3 Design Principles

In this section we present how to integrate pervasive devices in the classical
grid computing infrastructure. As outlined in the related work section many
solutions have been proposed at a high and low level of abstraction, which require
specialized expertise. In proposing this solution to a new community we can



encounter a natural resistance from the people that have to learn how to use
it. Moreover, high level solutions usually require the development of a plug-in
and a deep knowledge of a complex and specialized middleware. Therefore even
if some of the proposed solutions appear to be of general applicability they are
hard to apply in practice due to the amount of time that has to be spent in
learning how to use and extend them. Low level solutions instead require non-
trivial computer programming expertise, because they are not designed targeting
the Gridification of scientific instruments. Therefore solutions built starting from
this abstraction level may be quite advanced but hard to reuse: customization
to similar or other instruments may be performed only by experts.

To introduce our model for instruments Gridification, we take inspiration
from modern Web development practices. For example, many Web 2.0 services,
such as blogs, wikis, and social networking sites, target a variety of user cate-
gories:

– End User: definitely not a computer expert user, it has no understanding
about the technology that he is using but he is able to use the functionality
of a tool. For example, a blog writer may post his ideas on Web pages; a
scientist may retrieve data from a pre-configured instrument.

– Advanced User: with some basic computer science knowledge, she is ca-
pable of following the instructions for the installation of the tool and for
performing some simple customization. Advanced blog writers can create
and customize the layout and appearance of their blog. Advanced scientists
can setup and calibrate their instrument as they share it on the Grid.

– API Developer: thanks to their programming skills, these developers know
how to develop applications using the API offered by the tool. Developer
may write programs to retrieve and aggregate posts using the API of their
favourite blogs. Scientist developers may extend the Tiny Instrument Ele-
ment to support new kinds of instruments, as discussed in the case study.

– Tool Programmer: the builder of the tool itself, he has the ultimate knowl-
edge on how to use, customize, and extend it for any application. Once the
user community starts to grow, programmers should provide support to the
users of the other categories and use their feedback to improve the tool.

From this classification we notice how many different groups of people can
contribute to the success of a tool. We can also notice that non-specialized know-
how is enough for performing simple adjustments. Therefore users may become
familiar with the technology incrementally. This will foster the establishment of
a community that will support the tool, contribute to its development, testing,
extension, and application at the best of their knowledge. Interested users (and
scientists in our case) will progress from simple user to more advanced ones as
their familiarity of the tool increases, thus becoming able to apply a tool to more
advanced and specialized use cases.

The Tiny Instrument Element project is centered around the previously de-
scribed “gentle learning curve” principle. Additionally, the following guidelines
are at the foundation of its design.



– Skeleton Architecture: the Tiny Instrument Element is a semifinal artifact
that – used as a skeleton – can simplify and homogenize the construction of
the final solution.

– Technology Reuse: we prefer to reuse existing and adopted technology as
opposed to develop new middleware frameworks. This way, potential new de-
velopers may quickly contribute to the project by leveraging existing knowl-
edge and skills.

– Standard Packaging: the project packaging follows a standard structure
(e.g., the one of Maven) in order to be easy to understand by its users.

– Template Customization: several examples are given for common use
cases to guide developers as they customize and extend the skeleton archi-
tecture to their needs.

– Transparent Development: the Tiny Instrument Element is an open
source project driven by its user and developer community. Recent studies
have shown that the adoption of these methodologies improves the quality
of the software and reduces its development time [18].

Instead of presenting yet another complex middleware framework and show-
ing how to develop a new plug-in, we are focusing our attention on how the
customization of existing code can be integrated in the given target application.
In [1] we showed with empirical evidence that different devices have different
needs even if they share similar functionalities. Therefore the development of a
single middleware for all the instruments results in a complex solution, which
is difficult to maintain and customize. This also hinders the creation of a large
user community.

In order to overcome such limitations we provide a well-defined modular ar-
chitecture and we reduce the dependencies with external libraries. The goal is
to have new programmers become familiar with the project in a short time. In
addition, the adoption of Web based software deployment simplifies the installa-
tion procedure of the tool making it easy and convenient for scientists to access
its functionality through a Web-based interface.

4 Architecture and API Design

A Web service interface (WS) acts as front-end between external components
and the tiny Instrument Element (IE) itself. Using the Proxy/Wrapper pattern,
inside the IE one or more Control Manager (or Instrument Manager) map the
exposed WS to the actual devices. In the simplest scenario only one instrument
is controlled and the control manager acts just as a proxy for the information
contained in the device. Depending on the controlled equipment the control
manager could also perform fault tolerant and or autonomic control functionality.
A detailed technical documentation for the API can be found in the project Web
site [19]. Figure 1 summarizes the overall architecture of the system.

We describe the object-oriented design of the Tiny Instrument Architecture
following two common use cases. The first (detailed in Section 4.1) is about tailor-
ing the framework to new kinds of instruments. The integration of an instrument



Fig. 1. Architecture of the Tiny Instrument Element

consists in the implementation of one or more interfaces that take care of the
communication with the device. One or more instruments can be controlled us-
ing an object that implements the Parameter Listener interface. These objects
present new events to the Control Manager using the Instrument Functional-
ity interface. The proposed interfaces can support both stateless and stateful
instruments, which can communicate both in a synchronous or asynchronous
way.

The second use case concerns the remote access to the real instruments us-
ing the aforementioned Web service APIs (Section 4.2). External components
like a control room or a workflow engine can access the controlled instrument(s)
through the Web Service that retrieves the requested information via the instru-
ment control interface.

4.1 How to plug a new instrument

From a conceptual point of view an Instrument Manager (IM) (i.e., an imple-
mentation of your control manager) is completely described by its parameters,
attributes, commands, and a finite state machine:

– Parameters hold configuration information of the instrument.
– Attributes hold instrument variables (inputs and outputs).
– Commands hold actions that the device should perform.
– Finite State Machine specifies a state transition automata, used to con-

strain in which states can commands be executed.

This model is general enough to be applicable to different classes of instruments,
since some of the elements are optional. Therefore we can have devices that, for



instance, do not use the Finite State Machine because they only support one
command, or that do not have input attributes.

As an example, consider an instrument manager for a simple Voltmeter (i.e.,
an instrument for measuring the voltage between two points in an electric cir-
cuit). Parameter are: Maximum Voltage, Minimum voltage. These characterize
the instrument and do not change unless the given voltmeter provides the pos-
sibility to tune its measurement scale. Attributes: measured Voltage or set of
measures. Commands: Perform a measure or Perform a set of measures. Finite
State Machine: IM-Linked (the IM is connected the instrument), IM-Unlinked,
Error.

From an practical point of view, developing a controller for a new kind of
instrument involves implementing from 1 to 3 interfaces, depending on the con-
trol features supported by the device. In the simplest case, the instrument can
be controlled by implementing the InstrumentControl interface, shown in Fig-
ure 2. This interface represents the abstraction of a generic instrument, and
includes methods used for its remote control (such as create(), destroy(),
get/setParameters(), get/setAttributes(), executeCommand(), getStateMachine())
and should be implemented by a controller that acts as a protocol adapter be-
tween the APIs and the actual instrument. In the UML diagram of Figure 2 the
class Command represents a command while the class Parameter holds informa-
tion about both attributes and parameters. Note also that commands can contain
parameters and that parameters may contain arbitrarly typed objects. This de-
sign enables the instrument manager to execute complex command scripts to
manage the instruments.

In more complex scenarios, additional interfaces InstrumentFunctionality
and ParameterListener come into play, when the following assumptions do not
hold:

– There is one controller for each instrument
– The instrument does not send asynchronous messages
– The instrument can process commands in a short amount of time (less than

one second)

Like the majority of control systems, the design supports instrument ag-
gregation and grouping, as an Instrument Manager (IM) can bee also seen as
an instrument. This is a very important feature for controlling a collection of
instruments of similar kind through the same control instance.

More complex instruments require handling asynchronous inputs coming
from other devices or subcomponents. The UML diagram in Figure 3 shows the
additional interface that has to be implemented by a controller. Generic input
like State changes or Errors from the equipment may be presented to the IM im-
plementing the InstrumentFunctionality interface and the ParameterListener
interface.

These two objects collaborate following the Observer pattern and add a
method onMessage() to the InstrumentControl interface to support asyn-
chronous communication. Both the method init() and destroy() come from
the interface intrumentControl itself. Therefore only the method onMessage()



<interface> 
InstrumentControl

create()

get/setParameters()

get/setAttributes()

getStateMachine()

executeCommand()

destroy()
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Fig. 2. How to Plug a New Instrument: Basic Functionality
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<interface> 
ParameterListener
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destroy()

start()

getParameters()

<interface> 
InstrumentFunctionality

init()

destroy()

onMessage() 

MyController

Fig. 3. How to Plug a New Instrument: Advanced Functionality



has to be implemented in order to update the logic of the controller when an
asynchronous message coming from the equipment has to be handled. On the
other side of the observer pattern a ParameterListener interface can receive in
synchronous or asynchronous way messages coming from the controlled devices
and can call back the onMessage() method of the instrumentFunctionality
interface.

<interface> 
WebServiceAPI

executeCommand()

getParameter()

…………

getInstrumentManager()

getInstrumentManagerInContext()

…………

executeGridUI()

moveFile()

executeJob()

……….

StateMachineDescription Command

Parameter

Value

Type

isReadOnly()

Fig. 4. Grid API design of an instrument element

4.2 How to share instruments on the Grid

Instruments are included in the Grid through a service-oriented API, providing
the following operations:

– Monitor and control of one or more instruments
– Access and retrieve an instrument configuration parameters and topology.
– Collect the current measurements performed by the instrument
– Provide a set of APIs for the integration between instrument and Computa-

tional Infrastructure.

The API (shown in Figure 4) exposes a subset of the design elements intro-
duced in the previous section. Following the principe presented in section 3, most
of the Objects presented in section 4.1 have been reused in the Web Service APIs
In in order to minimize the knowledge that potential new programmers should
have in order to master the overall software.



The APIs take into account that more that an Instrument Element may
contain more than one Instrument Manager and that IMs may be organized
in certain topologies. Therefore graph navigation APIs have been provided like
getInstrumentManager() and getInstrumentManagerInContext(). The Ac-
cess to the computational infrastructure is provided by a wrapper around the
Grid User Interface. Therefore the produced data can then be moved to a stor-
age element using familiar commands sent to the instrument service via the
executeGridUI() method or simplified methods like moveFile() or submitjob().
In the current stable release of Tiny Instrument Element, the Grid interface is
only implemented using SOAP calls. We are currently extending it also to sup-
port a RESTful design to make it easier to invoke it from JavaScript applications.

5 Case Study

Instead of using a quantitative approach for the validation of the project, we
present a case study that helps to evaluate the efforts needed for applying the tiny
Instrument Element in a pervasive computing scenario. Our aim is to understand
the reusability of the software where classical Grid middleware can encounter
difficulties.

The case study is tracking a large collection of instruments, which are widely
distributed in the environment. These instruments perform various kinds of mea-
surements and data aquisition (GPS location, CPU usage, available memory,
QoS properties, availability status, data traffic) and can be deployed by scien-
tists at their location with minimal effort. The collected information can be then
conveyed to dedicated instruments that act as information providers enabling the
display, the geo-tagging and consulting of the aggregated data coming from dif-
ferent remote sources. An important requirement of the case study is that the
instrument control software should run on Linux/Windows operating systems,
but also in FPGA based embedded systems. The distribution of the software is
handled in 3 different ways:

– Web Start Application (click a web link an the instrument element is installed
to monitor your local machine).

– WAR Based Deployment (copy a file in the webapps folder of a Web appli-
cation server and the instrument element service is ready to be invoked).

– Cross compilation and deployment script (run the instrument element on
low resource systems such as FPGA).

Following the classification given in section 3 we can classify the people in-
volved in the development as follow:

– End User: any user that want to perform the demo that is availlable at the
web site.

– Advanced User: a small number of system administrators that deployed
the software one expert that knows how to deploy application on FPGAs.

– API Developers: two expert programmers that have no previous knowl-
edge of the given technology



– Tool Programmer: One of the people directly involved in the tiny IE
project that was giving mail assistance in case of problems.

The result of this case study helps to support the claim that the Tiny In-
strument Element can be extended in order to cover this pervasive computing
application scenario with minimal effort. Also, it is important to point out that
the case study demo [20] was built by two members of the project user commu-
nity and not by its original authors. Using the Tiny Instrument Element as a
starting point, the two programmers were able to apply it to 6 different kinds
of instruments [21], extend it with a distributed index for data aggregation and
complete it with a graphical user interface in less than two months. The feedback
that was provided by these users was very positive, thus showing the potential
of the Tiny Instrument Element to cater for the needs of its user community.
More in detail, the majority of the time was spent implementing a controller
compatible with the InstrumentControl interface.

6 Conclusion

In this paper we present the Tiny Instrument Element project showing our pro-
posed novel approach to the integration between instruments and the Grid. In-
stead of building a new middleware we propose to use a semifinite artifact (i.e.,
a skeleton software) that can be tailored to meet the requirements of a specific
instrument characteristics. This approach not only provides an uniform access
to the Gridified instruments but also leaves the flexibility to customize and tune
the Tiny Instrument Element for optimal monitoring and control of the instru-
ments. From the case study we have seen that none of the code included in the
Tiny Instrument Element release was redundant and that the time required in
order to gain a good understanding of the API and the corresponding skeleton
was quite small. This supports the idea of template-based software development.

The Project has started full open source activities in September 2008. If we
exclude our personal activity and the one performed by the case study partic-
ipants, until the end of 2008, the project website attracted 304 unique visitors
(7 Returning many times). The source code was downloaded 40 times and the
authors were contacted with positive feedback by 2 users of the community.
Whereas the project has been running for a relatively short time, these num-
bers are promising and show the benefit of a transparent development process
to achieve wider dissemination of our research ideas.

In the future road map of the project, we plan to begin investigating a REST
API for the remote access to the instruments, and the ability to publish instru-
ments on different Grid/Cloud Middleware frameworks such as ARC [22] and
Amazon EC2 [23] in order to prove the reusability of our proposed solution across
different middleware. We also plan to embed the instrument control API into a
scientific workflow system [24,25]
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