21st Australian Software Engineering Conference

Supporting Domain-Specific Programming in Web 2.0:
a Case Study of Smart Devices

Navid Ahmadi
Faculty of Informatics
University of Lugano
Lugano, Switzerland
navid.ahmadi@usi.ch

Abstract—Web 2.0 communities emerge regularly with the
growing need for domain-specific programming over Web
APIs. Even though Web mashups provide access to Web
APIs, they ignore domain-specific programming needs. On
the other hand, developing domain-specific languages (DSLs)
is costly and not feasible for such ad hoc communities. We
propose User Language Domain (ULD): an intermediate Web-
based architecture using a domain-specific embedded languages
approach that reduces the cost of DSL development to plugging
the Web APIs into a host end user programming language. We
have implemented the proposed architecture in the context of
smart devices, where we plug the functionality of different Lego
Mindstorms devices into a Web-based visual programming
language. We expect that several domains, such as smart homes
or wearable computers can use the ULD architecture to reduce
development effort.

Keywords-domain specific languages; Web 2.0 communities;
end user programming; plugin architecture; smart devices;
ubiquitous computing;

I. INTRODUCTION

The Web has become the main platform for the infor-
mation society. Lots of information and functionality have
been exposed on the Web as Web Services or Rest APIs,
encouraging domain-specific application libraries on top of
which domain-specific applications have been built. The
growth of this trend has led to envisioning the Web of
applications[1]. Relying on the Web-based socio-technical
environment, Web 2.0 communities have emerged[2]. These
communities consist of mostly end users sharing interest
that falls in one or many problem domains. The Web-
based socio-technical environments provide hypertext-based
collaboration. But to solve the computational problems, they
need access to domain-specific programming tools. Web
Mashup tools[3] provide access to these services mostly for
aggregation and visualization of information, independently
of the domain knowledge. Yet end users as the experts in
their own domain need support for domain-specific appli-
cation development[4]. Currently, Web 2.0 communities are
limited to the tools and applications provided by profession-
als to exploit provided services.

Web 2.0 communities address different problem domains

1530-0803/10 $25.00 © 2010 IEEE
DOI 10.1109/ASWEC.2010.36

Francesco Lelli
Faculty of Informatics
University of Lugano
Lugano, Switzerland
francesco.lelli@usi.ch

215

Mehdi Jazayeri
Faculty of Informatics
University of Lugano
Lugano, Switzerland
mehdi.jazayeri@usi.ch

and are varied in their programming needs. Providing a one-
off programming tool and language (e.g., mashup tools)
does not fulfill the needs of all the communities. Each
community needs its own domain specific language to cap-
ture the recurring problems of its domain. Yet, the domain
engineering process to develop a particular DSL is costly
and implementation of the underlying compiler or interpreter
needs professional programming expertise. These barriers
are in contrast with the casual and voluntary spirit of Web
2.0 communities. Moreover, Web 2.0 communities usually
emerge as a situational interest rather than in formal and
organizational settings. Design and implementation of a DSL
from scratch is not feasible in such dynamic contexts.

Domain-specific embedded languages (DSEL) have been
exploited to lower the barrier of developing a DSL from
scratch by reusing a general purpose language (GPL) to
access a domain-specific application library[5][6][7]. The
same approach can address the computational needs of
emerging communities, i.e., an emerging community of
end users may easily choose the required services that
capture the domain functionality and embed them into an
existing end user programming language that meets best the
problem domain. As a result, the host end user programming
language provides access to the main functionality of a
domain; hence the cost of compiler development reduces
to the cost of embedding the language for accessing the
provided application library. The services available on the
Web form a pool from which primitive domain operations
may be selected.

In this paper we suggest an intermediate (architectural)
solution between one-off domain-independent tools such as
mashup tools and costly domain-specific languages. Accord-
ingly, we devise User Language Domain (ULD): a Web-
based architecture to support domain-specific programming
based on DSELs in Web 2.0 communities. ULD requires as
a host language a general-purpose end user programming
language with a plugin architecture. Plugins are used for
embedding new functionality that captures the programming
model of the domain. We have applied the architecture in

IEEE
computer
® psouety

|
DSEL, / Ap, ¥
EUP
Language | ----- APIL,
DSEL,
API,
WEB WEB

Figure 1.

the context of smart devices [8]'. Each device represents
a separate domain with its own functionality and exposes
its instructions on the Web as Web services. A Web-based
visual programming language with a plugin architecture
enables the exposed instructions to be plugged into the
programming environment so that users are enabled to write
interactive programs for their devices. Our approach clearly
separates device specific, domain specific, and end-user
programming activities.

The rest of the paper is organized as follows: in Section
I we sketch the ULD architecture to support situational
domain appropriation; In Section III we report on an im-
plementation case study in the context of smart devices; In
Section IV we describe the related work while Section V
discusses our experience and presents the design tradeoff.
Finally in section VI we draw some conclusion.

II. ARCHITECTURE

In this section we present a Web-based architecture
for enabling domain-specific programming in the dynamic
ecosystem of Web 2.0 communities. Our idea is based on
using DSELSs to provide programming tools using a host end
user programming language. We assume that the application
domain libraries are accessible on the Web, as in practice

lin this context ULD can also be considered as User Language Device
since we are applying the architecture to the domain of smart devices

216

Domain-specific embedded language approach to enable domain-specific programming on the Web

hundreds of APIs are already shared and accessible on the
Web[9]. Our approach has the following advantages:

o The DSL development cost is reduced to embedding
the library into a host end user programming language,
addressing the dynamic ecosystem of emerging Web
2.0 communities.

o The DSEL approach provides domain experts with
domain-specific programming structures that capture
recurring problems of the domain, rather than providing
them with one-off domain-free tools such as mashups.

o The end user programming language facilitates the
programming for domain experts by relieving them of
low-level programming tasks[10]

Figure 1 shows a general overview of the ULD architec-
ture. Different domains expose different functionality as API
on the web. Examples of such APIs include access to social
networking (such as the facebook API), weather forecasting,
and APIs to access devices. For each API we create a DSEL
using the host EUP language which allows domain experts
to write their domain-specific programs using the provided
APIL

This approach is formalized in Figure 2, where we
propose a Web-based architecture for separating the func-
tionality from the programming language. According to
this architecture, the programming language communicates
with multiple application domain libraries. Each applica-
tion domain consists of multiple instructions that will be

embedded into the programming language to enable end
users to compose these instructions. One or more domain
adapters are used for communicating with the remote ser-
vices. The programming language, instruction plugins, and
service adapters are located at the client side, while the
domain functionality is located on one or more servers that
are accessible through their URLSs.

We assume that users know the location of the services
that they want to use. Once the URL is selected, the Domain
Adapter module connects to the service and acquires the list
of operations of the service. The Application Domain library
can automatically generate the instruction plugins from the
signature of the operations and plug this new functionality
directly into the programming language.

When an instruction is called from inside the program-
ming language, the service adapter serializes the method call
into the format specified by the server and sends the instruc-
tion to the service. The service processes the instructions
and returns back the result to the adapter. Finally, the adapter
passes the results to the programming language environment.

From Figure 2 we can also note that the End User Pro-
gramming Language module can use multiple Application
Domain Libraries (ADLs) for building its instructions. Each
ADL can use multiple Instruction Plugins that are built using
multiple Domain Adapters that wrap a particular Domain
Functionality.

Examples of domain adapters include: (i) access to
databases, (ii) Access to software as a service[11] and (iii)
Access to devices that expose their functionality to the Web
using, for example, Web or Rest services. In addition, in
case of data hardcoded inside one or more HTML pages
without any defined format, Web scraping methods can be
exploited to extract the information.

The programming language has to provide a programming
paradigm which is suitable for programming the domain
functionality, while offering high-level programming for
end users. We adopt an end user programming language
in the class of empowering systems[12], which provide
Turing-complete programming power and enhanced visual
techniques to assist the end user in programming.

III. CASE STUDY

We have applied the ULD architecture in a case study with
smart devices[8]. In this scenario, users interact with devices
over a computer network. The interaction between users and
devices usually takes place through a single-purpose user
interface that enables a particular functionality. Most devices
such as home appliances and sensors are independent of the
programming paradigm and as long as their functionality
is accessible by the programming language, they can be
programmed in any programming paradigm.

Using the described architecture we separate the function-
ality of devices from the programming language. In this way
the functionalities of each device can be embedded in any

217

End User Programming Language

i

Instruction Plugins

*

1

Domain Adapter

g
o
? 3.
@
]
Domain Functionality

Server

17 utewoq uones|ddy

Figure 2. User Language Domain (ULD): A Web-based Architecture
for embedding the application domain libraries into the host programming
language

programming language. In addition, each device can provide
some introspection for automating the access to its methods.
The rest of this section is divided in 2 parts: first, we
describe how we implement the domain functionality, then
we describe the proposed programming language showing
how we embed the instructions based on the functionality
provided by our devices.

A. Application domain

We evaluate the ULD architecture by implementing two
different configurations of Lego Mindstorms?. These devices
have multiple sensors and actuators. By building different
configurations of the robot we have emulated different spe-
cific domains while reusing some part of the developed code
across different configurations. Moreover, multiple sensors
and step motors make the Lego Mindstorms a complex
device that offers more sophisticated functionality than other
smart devices such as home appliances like a TV, microwave,
or referigerator. Figure 3 shows the implemented architecture
for each device.

We use the lejos library’ as the operating system of
Lego Mindstorms. Lejos also provides an API for remote
accessing of different bricks such as sensors and motors of
the Lego Mindstorms. A bluetooth connection is used for

Zhttp://mindstorms.lego.com
3http://lejos.sourceforge.net/

accessing the device from a nearby server. Each device is
paired with a server that exposes a Web based API offering
device functionalities. We use the Instrument Element* [13],
[14] for providing the same service while implementing the
different functionalities of the device.

We used two different Lego Mindstorms configured and
assembled in different configurations. Figure 3 shows the
implemented architecture for each device. Inside the Mind-
storms three different modules run in parallel.

o A feedback loop performs local actions such as stop-
ping the step motors if one or more touch sensors are
triggered or if the ultrasonic sensor detects objects that
are too close.

The communication program module initiates and
maintains communication with the server.

The control logic receives commands from the com-
munication program and triggers the required action in
the hardware. It also periodically senses the values of
the sensors and sends asynchronous update messages
to the server.

An Instrument Element runs on the server and offers the
Web APIs by implementing the following modules:

o The NXT APIs is a module that wraps the low level
communication library of Lejos offering a higher level
interface.

The Feedback loop receives commands implementing
recovery action depending on asynchronous messages
coming from the device. Examples include maintaining
a paired connection with the device and warning the
user in case of low battery.

The Cloud Access module fetches the sensor data
coming from the device and stores them in a remote
storage.

Finally the high-level functionalities that are offered as
Web API for the first device are:

move-backward speed
move-forward speed
stop

turn X degree

sense sensor name

While for the second device:

« move-forward speed
stop
turn X degree with radius Y

sense object at your direction

We note that some instructions are common for these
devices while others are different. Together with these
commands, we also provide introspection functionality for
the automatic discovery of the available instructions.

“4available at http://instrumentelem.sourceforge.net

218

Web APIs

| Cloud |
Access

Feedback
Loop

NXT}AP Is

-

==~ Bluetooth

‘., Com.
Prog

Feedback =7
loop M,

| Oberating System _ .'E) ﬁj
I Lego Robot ,'-""

Control
Logic

Figure 3. ULD Architecture for Programming the Lego Mindstorms

B. Programming Language

We have selected a visual rule-based programming lan-
guage to program Lego Mindstorms. This language, to-
gether with its underlying compiler, support an event-based
programming paradigm, conforming to JavaScript’s pro-
gramming paradigm. Each event is a method that can be
programmed by the user and consists of multiple rules. Each
rule is composed of conditions and actions that are instances
of instructions. Each instruction can be either a generic
instruction that comes with the programming language, such
as setting the value of a variable, or a domain specific
instruction plugin that is embedded into the programming
language. At programming time, the composition of condi-
tions and actions is supported by dragging a condition/action
from the conditions/actions list and dropping it into the rules.
The program written by the end user is serialized to XML
format. Then the underlying compiler compiles the program
to native JavaScript application. Figure 4 shows a snapshot
of the programming environment.’

The figure shows a program that consists of two rules.
The first rule measures the battery level and in case of low
battery it turns the device off. Otherwise, the second rule
will be tested according to which if the ultrasonic sensor of
the device senses an obstacle in front of it, the device will
turn 90 degrees and move forward with the specified speed
for a while and then it will stop.

In the rest of this section we describe how the instruction
plugins are implemented and how we automate the plugin
generation using the introspection methods provided by the
Web API of the devices.

5The programming environment has been under development as an open-
source project available at http://weup.sourceforge.net

Programming Environment
Conditions

Programming Environment

Actions

_c - RunAway ! & Move Forward
onditions —
Sense
BatterylLevel B ’%’ Move Backward
Speed
‘% Relation Test Turn
any text ’{_' degree
[E Conditions
any text Sense ’i’
UltraSonic ﬂ .
= 4| -]
Move Forward Seconds
$ Turn Off

New Rule New Method

Duplicate

Serialize Apply

E |

Figure 4. Visual Programming Environment

1) instruction plugins: The programming language has a
plugin architecture. All the instructions are defined in the
XML format. The definition of an instruction contains the
list of instruction arguments, visual representation of the in-
struction, and the execution code. Figure 5 demonstrates the
definition of a general instruction of the programming lan-
guage, called Relation Test, that evaluates two expressions
and applies a relational operator on them. This instruction
is defined as a condition to be listed in the list of condition
instructions. The definition consists of three main parts.

o InputList element contains a list of instruction input
arguments. Each input has an id and a type. In this
example, three inputs are defined: two text inputs for
entering the expression and one relational operator.

o VisualRepresentation element contains the HTML-
based user interface definition of the element. The
programming language extracts this HTML definition,
creates a DOM tree out of it and attaches it to the
DOM tree of the programming environment whenever
required. In this example, a table element has been
used to show the instruction name and three input
arguments in a column. Each input argument is also
defined as a XML-based plugin and contains its own
UI to be instantiated and attached to the programming
environment (described later).

o ExecutionCode element contains an execute method
that has to be implemented for each instruction. The
execute method will be executed at run time. In this
example, the execute method gets the value of all three
input arguments, applies the chosen operation on two
expressions using JavaScript eval() function and returns

<?xml version="1.0" encoding="utf-8"7>
<!--Visual Instruction Definition-->
<VID name="Relation Test" type="condition">
<InputlList>
<input id="inputl" type="Text"></input>
<input id="1input2" type="RelationalOperator"></input>
<input id="input3" type="Text"></input>
</inputlist>
<VisualRepresentation>
<table id="instruction" draggable="true" type="condition">
<tr><td id="instructionName">Relation Test</td></tr>
<tr><td><inputl id="1instructionInput"/></td></tr>
<tr><td><input2 id="instructionInput"/></td></tr>
<tr><td><input3 id="instructionInput"/></td></tr>
</table>
</VisualRepresentation>
<ExecutionCode>
this.execute=function(Q{
//test two expressions against the operator
//and return the result
}
</ExecutionCode>
</VID>

Figure 5. Visual Instruction Definition for a Relation Test Instruction.

the value.

Each instruction is composed of zero or more input
arguments, and each input argument has a data type. To
reuse the data types, we have also implemented them as
plugins, i.e., each data type is defined in the XML format.
Figure 6 shows the XML content of a defined datatype. Each
visual datatype defines a HTML-based visual representation
that is instantiated and attached to the DOM tree of the pro-
gramming environment whenever an instruction containing
an input argument of such datatype is instantiated. All visual
datatypes have to implement two methods called getValue

<?xml version="1.0" encoding="utf-8"7>

<!-- Visual Datatype Definition -->

<VDT name="RelationalOperator">

<select name="RelOpList">
<option value="=="> = </option>
<option value="!=">!= </option>
<option value=">">></option>

<option value=">=">>=</option>
<option value="<"><</option>
<option value="<=">&1t;=</option>
</select>

<setValue>

this.setValue=function(value){
//choose an operation in UI
//based on the input argument

}
</setValue>
<getValue>
this.getValue=function(){
//return the selected element
//as a text value

3
</getValue>
</VDT>

Figure 6. Visual Datatype Definition for a Relational Operator.

and setValue that are used both for serialization of the
program written by end user to an XML-based document
and by the execute method of the instruction at run time.

2) Automatic plugin generation: If the application do-
main libraries can provide an introspection mechanism a
plugin-based programming language can generate automat-
ically the instruction for a new library when the new func-
tionality is being added to the programming environment
using its URL. In the context of this case study, each
device exposes a different set of commands to the Web
so that each Mindstorms has to be treated as a different
application domain library. To access the device commands
from inside the programming language, we have to create an
instruction plugin for each command of the device. In our
implementation, the service adapter component mentioned in
the architecture is responsible for both communication and
generation of instruction plugins. The instruction plugins are
being generated automatically when a new Lego Mindstorms
is connected to the programming language by providing its
URL to the programming environment. The end user only
provides the Web service URL to the programming envi-
ronment. Then the programming environment acquires a list
of device commands from the device, generates instruction
plugins for each single command, and adds the instructions
to the programming language.

To generate the instruction plugins on-the-fly, we created
a template for the definition of instructions of the program-
ming language, as shown in Figure 7. The template contains

220

<?xml version="1.0" encoding="utf-8"7>
<VID name="__commandName" type="__commandType">
<!--Visual Instruction Definition Template-->
<inputlList>__inputlList</inputlList>
<VisualRepresentation>
<table id="instruction" draggable="true"
type="__commandType">
<tr>
<td id="instructionName"
align="center">__commandName</td>
</tr>
__inputUI
</table>
</VisualRepresentation>
<InstructionCode>
this.execute=function()

{
var params= new Array();
__params
ExecuteCommand("__commandName" ,params);

}
</InstructionCode>
</VID>

Figure 7. Plugin Template.

the generic definition of an instruction similar to the one
shown in Figure 5. When a Lego Mindstorms is connected
to the programming environment, the service adapter (de-
scribed in the architecture) communicates with the Web
service exposed by Instrument Element. The Instrument
Element provides a getCommands operation that returns a
list of commands of the device, input list of each command,
and the type of each input. The service adapter retrieves the
list of commands and for each command instantiates a plugin
template and fills it with the command’s parameters such as
the command name and its input list with proper data types
of the programming language for each input. It also modifies
the execute method to call the ExecuteCommand method
with the input values coming from the programming lan-
guage. The ExecuteCommand method which is implemented
in the service adapter invokes the device command with its
parameters and returns the result during the execution.

IV. RELATED WORK

Domain specific languages for domain experts Van
Deursen and Visser[6] define a domain-specific language
(DSL) as ”a programming language or executable specifi-
cation language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually
restricted to, a particular problem domain.” Fischer et al.
[15] discuss the evolutionary nature of domain modeling
and construction that is done by a community of practice
over time, and suggest supporting collaboration in domain
construction. Domain-Oriented Design Environments have
been suggested by Fischer et al[16] to support human
problem-domain interaction rather than human computer
interaction. End user programming environments such as

AgentSheets have been developed to enable domain experts
to build their own DSLs[17].

With the emergence of Web 2.0, the Web has become
a social platform on which new communities emerge con-
stantly. Web 2.0 communities need to develop applications
in their own domain of interest, i.e., shifting the Web
towards the Web of applications[1]. Yet the ecosystem of
Web 2.0 communities is highly dynamic and developing
DSLs for these communities is not feasible. Fischer et
al. provide guidelines on supporting domain experts in
developing software artifacts, particularly with respect to the
existing growth of the end user developers on the Web [4].
Mernik et al. observe that the development of a DSL rarely
goes further than developing an application library, since
DSL development requires both domain knowledge and lan-
guage development expertise[5]. Application libraries used
together with a general-purpose programming language are
called domain-specific embedded languages[7]. Developing
a DSEL reduces the the programming language development
process of DSL to developing the programming structures of
the domain in a host GPL. The UDL architecture reflects the
same approach of plugging a domain application library to
a host end user programming language.The domain adapter
component in the UDL architecture is responsible for captur-
ing the domain-specific constructs as high-level instructions
over the provided domain functionality and plugging them
as instructions of an end user programming environment.

Programming ubiquitous devices In recent years the
idea of programming ubiquitous devices has gained increas-
ing attention. In [18], Truong et al. propose a programming
language based on the The Magnetic Poetry Metaphor.
Users arrange poetry in a virtual blackboard that results
in a sequence of actions of a set of devices. In [19]
the authors propose different approaches for programming
devices including textual and visual languages for advanced
users. Blackwell and Hauge provide an architecture for
programmable home appliances[20]. For the sole domain
of Lego Mindstorms that we have used in our case study,
Microsoft suggests the Microsoft Robotics Developer Studio®
which consists of a visual programming language to program
the device and access to the device functionality from other
Microsoft programming tools. Microsoft Robotics Developer
Studio is an example of domain-specific language developed
for the single domain of robotics, while our approach
addresses different domains and devices by embedding them
into a suitable programming language.

Web Mashups The demand to combine data and services
on the Web according to the user’s need has led to the devel-
opment of Web mashups[3]. Each mashup is a combination
of data and services from several sources on the Web. The

©http://msdn.microsoft.com/en-us/robotics/default.aspx

221

data is usually provided as a Web feed or the output of
Web or REST services. Mashups are usually native Web
applications written in JavaScript and using AJAX, JSON
and XML-based technologies. ProgrammableWeb.com has
become the main stream for sharing mashups and Web APIs.

To lower the barrier of writing a Web mashup, mashup
tools have been created mostly by commercial companies
yet freely accessible on the Web. These atrifacts usually
provide a higher level of abstraction for the programming
of mashups. For example Yahoo! Pipes 7 provides a GUI
to pipe data to operators such as aggregators and services.
Google Mashup Editor (GME) 8 provides a high level
mashup development API to be used in JavaScript. Similar
mashup tools with slightly different approaches such as
Microsoft Popfly and Intel Mashmaker have been offered
to mashup developers[21]. Domain-specific languages for
building mashups have been developed [22][23]. End user
programming approaches such as data-flow programming,
scripting, and spreadsheets have been applied in mashup
development [24], [25], [26], [27].

The fast growth of Web mashups shows the acceptance
of building applications on top of existing data and APIs.
Mashup building tools present the power of existing technol-
ogy to build Web-based applications using data feeds, AJAX,
JavaScript, and REST APIs. However, existing mashup de-
velopment tools provide a one-off programming language for
all the existing APIs on the Web. These tools ignore the need
for domain-specific languages and appropriate programming
structures specific to different application domains and their
corresponding APIs. In contrast, we believe that although
the functionality is suggested as APIs on the Web, providing
tools to just communicate with these APIs and aggregate the
results is not enough for domain experts of a domain to build
their own applications over the provided functionality. Our
architecture wraps the domain-specific structures of each
application domain in the domain adapter and embeds it
into an end-user programming language to create a domain-
specific programming language on the Web.

V. DISCUSSION

Our case study of smart devices helps to show the promise
of separating functionality from the end user programming
language in end user programming. Currently, web based
artifacts are released together with a set of open APIs that
can be used by their customers for building extensions.
Our solution allows an efficient way of embedding these
APIs into a customizable wed based end user programming
environment.

Based on this case study we note that:

o The idea of adopting a plugin architecture introduces a
tradeoff between (i) having a standardized and uniform

"http://pipes.yahoo.com
8http://editor. googlemashups.com

access to different APIs and (ii) having a completely
free set of methods. In the first case the realization
of the Application Domains Library is simpler and
portable. However, the introduction of domain dedi-
cated features is more complex.

In the realized prototype we have considered the pos-
sibility of separating the functionality from the visual-
ization. However, we could also embed in the APIs a
set of metadata for the visualization of the instructions
and this will result in a more uniform adoption across
possible domain languages.

The end user programming language developed in this
case study runs completely on the client side of the Web
browser. By using JavaScript as the assembly language
of the Web, the underlying compiler of the program-
ming language compiles the visual language into the
complete JavaScript application. Since JavaScript is
an event-based programming language, the compiler is
forced to map the visual programming language to an
event-based language.

In our case study, the provided visual language con-
sists of methods that can be treated as events and be
triggered upon calling them; hence it is straightforward
to map this language to an event-based language. How-
ever, in case of need for other programming paradigms,
such as functional programming or data-flow program-
ming, the mapping to an event-based language is more
complex.

Server-side execution of end user developed applica-
tions creates a trade-off between flexibility and interac-
tivity. Although server-side compilation and execution
increases the flexibility on possible technologies and
methods to be used for compilation and execution,
it hampers interactivity during application execution,
which is important in domains such as scientific sim-
ulations and games. A hybrid solution between client-
and server-side execution has to be chosen according
to the domain.

VI. CONCLUSION

In this paper we propose ULD, a Web-based architecture
to separate the domain functionality from the programming
language to support programming in the highly dynamic
ecosystem of Web 2.0 communities. We devise a plugin
architecture for an end user programming language to be
used as a host language into which the functionality of
multiple domains can be plugged. We apply our architecture
in the context of smart devices. As a result, end users
are provided with a visual programming environment to
program different Lego Mindstorms devices. The visual
programming interface is automatically generated from the
device functionality and embedded into the programming
environment.

222

The adoption of the Web for end user programming
opens new frontiers for collaborative developments. The
developed case study will serve as a testbed where we will
evaluate different collaborative end user programming tools
and methods in order to assess the potential of end user pro-
gramming in online social environments and understanding
their challenges.

ACKNOWLEDGMENT

The authors would like to thank Alimur Rashid, Sohrab
Ameli, and Krzysztof Zawadzki for their contribution in the
development of the case study.

REFERENCES
[1]

T. Raman, “Toward 2%, beyond web 2.0,” Communications
of the ACM, vol. 52, no. 2, pp. 52-59, 2009.

[2] T. O’Reilly, “What is web 2.0: Design patterns and busi-
ness models for the next generation of software,” 2005.
http://oreilly.com/web2/archive/what-is-web-20.html.

[3] R. Yee, “Pro Web 2.0 mashups: Remixing data and Web
services,” Apress, 2008.

[4] G. Fischer, K. Nakakoji, and Y. Ye, “Metadesign: Guidelines
for supporting domain experts in software development,”
Software, IEEE, vol. 26, no. 5, pp. 37 — 44, Sep 2009.

[5S] M. Mernik, J. Heering, and A. Sloane, “When and how to de-
velop domain-specific languages,” ACM Computing Surveys,
vol. 37, no. 4, pp. 316-344, 2005.

[6] A. V. Deursen and J. Visser, “Domain-specific languages: An
annotated bibliography,” ACM SIGPLAN Notices, Jan 2000.
[7] P. Hudak, “Building domain-specific embedded languages,”
ACM Computing Surveys, vol. 28, no. 4es, Dec 1996.

[8] M. Weiser, “The computer for the 21st century,” Scientific
American, pp. 66-75, 1991.

(91
[10]

http://www.programmableweb.com

B. Nardi, “A small matter of programming: Perspectives on
end user computing,” MIT Press, Jan 1993.

[11] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay,
and M. Munro, “Service-based software: the future for flex-
ible software,” Proceedings of the Seventh Asia-Pacific Soft-
ware Engineering Conference, pp. 214-221, 2000.

[12] C. Kelleher and R. Pausch, “Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers,” ACM Computing
Surveys, vol. 37, no. 2, pp. 83-137, Jun 2005.

[13] F. Lelli and C. Pautasso, “The tiny instrument element,”
Proceedings of the 4th International Conference on Advances
in Grid and Pervasive Computing, pp. 293-304, 2009.

[14] E. Lelli, E. Frizziero, M. Gulmini, and G. Maron, “The
many faces of the integration of instruments and the grid,”
International Journal of Web and Grid Services, vol. 3, no. 3,
pp. 239-266, Jan 2007.

[15]

[16]

(7]

(18]

(19]

[20]

(21]

G. Fischer, S. Lindstaedt, J. Ostwald, M. Stolze, T. Sumner,
and B. Zimmermann, “From domain modeling to collab-
orative domain construction,” DIS ’95: Proceedings of the
Ist conference on Designing interactive systems: processes,
practices, methods, & techniques, Aug 1995.

G. Fischer, “Domain-oriented design environments: support-
ing individual and social creativity,” Computational Models
of Creative Design IV, pp. 83-111, 1999.

A. Repenning and T. Sumner, “Agentsheets: A medium
for creating domain-oriented visual languages,” Computer,
vol. 28, no. 3, pp. 17-25, 1995.

K. Truong, E. Huang, and G. Abowd, “CAMP: A magnetic
poetry interface for end-user programming of capture applica-
tions for the home,” UbiComp 2004: Ubiquitous Computing,
pp. 143-160, 2004.

R. Hague, P. Robinson, and A. Blackwell, “Towards ubig-
uitous end-user programming,” Adjunct Proceedings of Ubi-
Comp, pp. 169-170, 2003.

A. Blackwell and R. Hague, “Autohan: An architecture for
programming the home,” Proceedings of the IEEE Symposia
on Human-Centric Computing Languages and Environments,

pp. 150-157, 2001.

O. Beletski, “End user mashup programming environments,”
Helsinki University of Technology. Telecommunications Soft-
ware and Multimedia Laboratory T-111.5550 Seminar on
Multimedia, p. 13, 2008.

223

(22]

(23]

(24]

(25]

[26]

(27]

M. Sabbouh, J. Higginson, S. Semy, and D. Gagne,
“Web mashup scripting language,” Proceedings of the 16th
International Conference on World Wide Web, Jan 2007.

E. Maximilien, A. Ranabahu, and K. Gomadam, “An online
platform for Web APIs and service mashups,” Internet Com-
puting, IEEE, vol. 12, no. 5, pp. 3243, 2008.

J. Wong and J. Hong, “Marmite: End-user programming for
the Web,” CHI ’06 extended abstracts on Human factors in
computing systems, Apr 2006.

J. Wong and J. Hong, “Making mashups with marmite:
Towards end-user programming for the Web,” CHI ’07:
Proceedings of the SIGCHI conference on Human factors in
computing systems, Apr 2007.

J. Lin, J. Wong, J. Nichols, A. Cypher, and T. Lau,
“End-user programming of mashups with vegemite,” Ul
’09: Proceedingsc of the 13th International Conference on
Intelligent User Interfaces, Feb 2009.

G. Wang, S. Yang, and Y. Han, “Mashroom: End-user mashup
programming using nested tables,” Proceedings of the 18th
International Conference on World Wide Web, pp. 861-870,
Jan 2009.

