
Improving the performance of XML based technologies by caching and reusing
information

Francesco Lelli 1,2 , Gaetano Maron 2, Salvatore Orlando 1

1Dipartimento di Informatica, Università Ca’ Foscari di Venezia
2Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro

francesco.lelli@lnl.infn.it gaetano.maron@lnl.infn.it orlando@dsi.unive.it

Abstract

The growing synergy between Web Services and Grid-
based technologies is enabling profound, dynamic
interactions between applications dispersed in
geographic, institutional, and conceptual space. Such
deep interoperability requires the simplicity, robustness,
and extensibility for which XML has been conceived,
making it a natural lingua franca for the network. Along
with these advantages, there is a degree of inefficiency
that may limit the applicability of XML.
In this paper, we investigate the limitations of XML for
high-performance and high-interactive distributed
computing. Our experimental results clearly show that
focusing on parsers, that are routinely used for desterilize
XML messages exchanged in these system, we can
improve the performance of a generic the end to end web
services based solution. Then we present a new parser,
the Cache Parser, which uses a cache to reduce the
parsing time by reusing information related to previously
parsed documents/messages similar to the one under
examination. Finally, we will show how our fast parser
can improve the global throughput of any application
based on Web or Grid Services, or also JAXP-RPC.

1. Introduction

XML [1] is a mark-up language used for describing
structured data. An XML document consists of elements
and their attributes, where each element has a name and is
characterized by start and end tags. Element’s content is
included between the tags, and may consist of other
elements, data or may be empty. Each element may have
attributes that consist of pairs (name=value). XML
enables users to introduce elements and attributes, their
names and their relations in the document, by specifying a
particular XML syntax (DTD/Xschema). The purpose of
this syntax is to define the legal building blocks, the
structure and the list of legal elements of an XML
document.

An XML-based set of technologies are those at the basis
of Web Services (WSs) [2], [3],[4],[5], by which existing
legacy systems can be wrapped as WSs, and made
available for integration with other systems. Applications
exposed as Web services are accessible by other
applications running on different hardware platforms and
written in different programming languages. Using this
approach, the complexity of these systems can be
encapsulated behind XML/SOAP protocols.
A common trade-off in computing is between the need of
universality and performance, and this is particularly true
when WSs must be exploited to design a system in which
both high performance and QoS requirements are
mandatory. A limit case, in witch fulfilling both such
requirements is really necessary, is scientific computing,
which demands the full range of capabilities that
industrial computing does: reliable transfer in distributed
heterogeneous environments, parallel programs often
exchanging data, self-contained modules sending events
to steer other modules, and complex run-time systems
designed for heterogeneous environments with
dynamically varying loads, multiple communication
protocols, and different Quality of Service (QoS)
requirements. Unfortunately, the qualities of SOAP that
make it universally usable tend to lower the
communication performance. In particular, the features
that make XML communication inefficient regard the
primarily ASCII format of XML, and the verbosity of
XML, due to the need of expressing tags and attributes
besides the true information content.
As we will see in session 2, in a WS environment a lot of
runtime activity is however spent in parsing XML
documents: every client or server process needs to exploit
an XML parser to send/receive messages. So speeding up
the parsing algorithm should have a big impact on the
total communication time, by largely reducing overheads.
In particular, we are interested in reducing the overheads
on the receiver side, where the task of a parser is to
desterilize the message by checking whether it conforms
to the DTD/Xschema syntax, and extracting data from the
textual XML representation.

We noted that in high performance computing systems
based on WSs, like contemporary Grids currently
programmed through Grid Services,(i.e. a technology
build on top of WSs), each subsystem routinely
exchanges information by using very similar XML-
formatted messages. The exchanged XML information
often has the same “structure”, i.e not only the same
DTD/Xschema syntax, but also the same particular
syntactic tree. “Standard” parsers do not use this
information to improve unmarshaling algorithm
performance, so we develop a cache-based system that
takes advantage of this behavior. When the system parses
a new XML document, it first tries if his structure
matches an already know structure. This is quickly
carried out by testing a document checksum. In case of a
cache hit, the document will be parsed with a fast
algorithm that exploits the stored knowledge on the
document syntactic tree. Otherwise, the document will be
analyzed by using a standard parser, and a new cache
entry will be created to store the syntactic tree of the new
document.
Our test-case and our motivating application is the
Instrument Element (IE) Grid Component, which consists
of a coherent collection of services, which allow us to
remotely configure, partition and control a physical
instrument, and permit this instrument to be better
integrated into a computational Grid. The IE has been
successfully exploited to design several pilot applications
of our GridCC project [6], [7] and its implementation is
currently based on WS technologies. Inside this
component a set of WS interface called VIGS (Virtual
Instrument Grid Service) allow users to access a real
instrument, thus also plugging the specific instrument into
the more traditional Data and Computational Grids. An
example of use of this IE is the Compact Muon Solenoid
(CMS) experiment [8], where the IE is the master
controller of the Data Acquisition (DAQ) system. The
problem to solve is when the experiment is taking data,
since it demands high network traffic. In this case a
multitude of services interoperate with each other in a
large LAN composed of about 6000 machines, by using
XML/SOAP lingua franca for exchanging information.
As show in Figure 1, the instrument Manager (i.e., an IE
component) organizes the elements of a DAQ in sets,
checks their status, controls the “quality” of theirs
computing behaviors, and so on.
The VIGS, i.e. the user interface of our IE, has a static
structure. In addition the XML documents/messages that
are exchanged between the IE’s processes and the
specific instruments are usually characterized by a
“persistent” structure. Note that in our WS
implementation such messages are XML-formatted ones,
which are inserted in SOAP envelopes and then passed
via HTTP to a receiver that parses it to extract valuable
data.

Figure 1 the Instrument Element Use Case

Since in our use-case the XML documents are short and
transmitted over a fast network, the idea of reducing the
transmission delay by compressing the XML messages
does not seem as good as developing a more efficient
parsing algorithm based on XML documents persistence,
thus reducing the overheads on the receiver.
Even if all the remarks about the persistence of the
structures of the message are motivated by our specific
Grid use-case, where a multitude of senders have to send
multiple times messages characterized by the same
structure to a small set of receivers, a similar persistence
in XML messages exchanged can also be observed in
several other distributed applications based on Web/Grid
Service technologies.
The rest of the paper is organized as follows: Section 2
will present an overview of the considered architecture
for building our benchmarks and the obtained result. In
Section 3 we will see our new parsing algorithm in detail,
by focussing our attention on the issues and adopted
solutions. In Section 4 we will present the performed test,
the obtained experimental results. Finally, in Section 5,
we will show our conclusions.

2. Understanding the XML limit

This paragraph describes a high level and general
architecture, used to build a generic modern web-based
application like our IE. This general architecture
reviewed is applicable across technologies [10], [11] so
that we use it to understand the limits that an XML
solution can introduce in term of interactivity and handled
requests per second. A modern web-based enterprise
application has 3 layers (see figure 2):

• A client layer, which is responsible for
interacting with the user, e.g., byWeb Page
rendering;

• A middle tier which includes:
1. A Presentation Layer which interprets

user inputs (e.g., her/his submitted

Instrument
Manager

SOAP/XML

TOMCAT

Set of Instruments

Instrument
Manager

SOAP/XML

TOMCAT

Set of Instruments

Instrument
Manager

SOAP/XML

TOMCAT

Set of Instruments

HTML forms), and generates the
outputs to be presented to her/him (e.g.,
a WebPage, including their dynamic
content).

2. A Business Logic Layer which enforces
validations, and handles the interaction
with the data layer.

• A data layer, which stores and manage data,
and offers the handling interface to the upper
layers.

Figure 2 3-tier Architecture

This structure allows changes in legacy host access and
development of new business logic to be kept separate
from the user interface, dramatically reducing the cost of
maintenance. Three-tier architectures also enable large-
scale deployments, in which hundreds or thousands of
end users are enabled to use applications that access
business information.
Our motivating application, the Instrument Element,
follow this abstract architecture: it is just a 3-tier
application, with a strong separation between the
Business Layer and the Presentation layer, that use a very
simple data layer.
Talking about business to consumer applications, the
client layer of a web application is implemented as a web
browser running on the user's client machine. Its job in a
web-based application is to display data and let the user
enter/update data.
In a business to business scenario the client layer can be a
generic application, compliant to the web-service
standard. The presentation sub-layer generates (or
displays) WebPages, or produces (or interprets) XML-
based SOAP messages in a Web Service scenario. If
necessary, it may include dynamic content in them. The
dynamic content can originate from a database, and it is
typically retrieved by the Business logic that:

• performs all required calculations and
validations;

• manages workflow (including keeping track
of session data);

• manages all the needed data access.
For smaller web applications, it may be unnecessarily
complex to have two separate sub-layers in the middle
tier. In addition the sub-layer communications typically
do not use XML.
From a temporal point of view (showed in figure 3) a
client (Web Services, web browser, java, c++, etc)
performs a request to the business logic that dynamically
retrieves the requested information. During the
elaboration phase, the server can either perform one or
more queries to a persistent storage, or interact with other
sub-business unit. Once the information is retrieved, the
server formats the retrieved information in a way that the
client is able to understand, and sends it back to the client.

Figure 3 3-tier Sequence diagram

In a Web Service scenario, the clients need to exploit a
further SOAP protocol layer over HTTP communications,
while in human client scenario they the communication
can be made just via HTTP.
The purpose of the next session is understood the real
costs of the validation and reply formatting phases, by
also varying the used technology. We setup a set of tests,
using a synthetic application that follows the mentioned 3
layer architecture.
Others benchmark was already published on SOAP
performance, but our approach differ from the ones
discussed in [12] and [13]. What we would like to
evaluate is the WS behaviour in a real scenario,
understanding WS limits and giving the reader a clear
idea of when the WS approach fails. In particular we will
focus our attention on WSs exchanging short messages on
a LAN network, which is the typical setting of our
motivating application.

2.1. 3-tier Test bed:

In order to reproduce the architecture presented at the
beginning of this paragraph, in the same local LAN we
set up two different server machines, the former hosting

an Oracle DB Server as a storage system, and the latter
hosting a Tomcat Application Server as a Middle Tier.
Then we run a set of clients on other different machines
in the same cluster.
 The hardware used in this test is:

• Database Server: Dual Xeon 1.8 GHz, with 2
GB RAM, Ethernet 1 Gbps, OS Red Hat Linux
Advanced Server 2.1.

• Application Server: Dual Xeon1.8 GHz, with
1.5 GB RAM, Ethernet 1 Gbps, OS Red Hat
Linux Advanced Server 2.1.

• Clients: 25 Pentium III 600 MHz, with 256 MB
RAM, Ethernet 1 Gbps, OS Linux Red Hat 9.0.

As Client/Server communications we used:
• Simple HTTP
• SOAP/XML over HTTP

Within the same Tomcat server, we also set up an Axis
engine, in order to evaluate the performance of a WS
communication (i.e., SOAP/XML+HTTP with automatic
generated stubs) between client and server.
The DB table structure and the complexity of the queries
are really simple (e.g., 1 table, with 5 attribute, as DB
structure).
Our benchmark is thus the following: the clients (java
applications) perform a request to a Tomcat Servlet or to
Web Service. The business logic layer, in order to present
the result to the client, performs a query using a pre-
generated JDBC connection, to the data base server.
Then the same layer formats the result and sends it to the
client.
In this scenario we evaluate both the response time of a
single client connection, and the global application server
throughput in term of satisfied requests per second. The
results are shown in next paragraph.

2.3 Service Request Time

We first measured the service request time, just using one
client. Therefore we can assume that both the application
server and the data base server are not busy, since they
have to serve one request at a time.
Figure 4 shows the average times when using either
servlet or Web Service technology.

Figure 4: Service request time for servlet and WS

As we can see the total delay time of the WS (100 ms) is
greater than the servlet one (16 ms). We can also note that
the most of the request time is spent during the
SOAP/XML serialization / de-serialization of the objects
exchanged between the client and the server.
We have to note that the marshalling and un-marshalling
process only depends on the exchanged data, and not on
the complexity of the elaboration phase. This means that
the WS cost, in terms of service delay, is important and
non negligible for real time or interactive applications,
where the final user/program typically needs a reply in a
short amount of time. For non interactive service, this
delay is acceptable.

2.4. Handled Request per Second

According with the scenario described in session 2 we
also performed a test aimed to understand the number of
requests handled per second in two different scenarios. In
the first one, a servlet or a Web Service, once invoked,
performs a query on the storage system and sends back
the result. In the second scenario, we remove the Data
Layer in order to exactly measure the service invocation
time.
The plots in Figure 5 are related to the first performed
measure.

Test Query 10 Result

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15

Number of Clients

In
vo

ca
tio

n
pe

r
Se

co
nd

Servlet
Servlet RPC
Servlet RPCXML
Web Services

Servlet

I II

III

Client

64 msg/s 16 ms

600 msg/s
1.7 ms

65 msg/s

15 ms

3 ms

320 msg/s

DB

I II

III

Client

10 msg/s 100 ms

600 msg/s
1.7 ms

60 msg/s

17 ms

DB
Class

WS
Tie

Stub

AS

IV

80 ms

78 ms

Test Query 100 Result

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clients

In
vo

ca
tio

n
pe

r
Se

co
nd

Servlet
Servlet RPC
ServletRPCXML
Web Services

Test Query 1000 Result

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Clients

In
vo

ca
tio

n
pe

r S
ec

on
d

Servlet
Servlet RPC
ServletRPCXML
Web Services

Figure 5: Handled request per second using a storage
tier
The “ServletRPCXML” curve refers to a servlet that does
exactly the same web service actions: in particular, it
sends back to the client the result only at the end of the
preparation of the result layout. The “ServletRPC” refers
to a servlet that do exactly the same job of the previous
one but the exchanged information are serialized in
simple HTTP, while the “Servlet” curve differs from the
first because, instead of buffering the result and sending it
at the end of the preparation phase, it immediately starts
sending it in a streaming way using an HTTP custom
serialization
Finally, we can note that the performance of WS is
similar to “ServletRPCXML”. This means that its large
performance decrease is due to both, buffering of the
result and XML serialization, since clients and server
have additional computational and synchronization
overhead. As we can see, WS infrastructure introduces a
remarkable performance overhead, and can not allow, due
to the adopted RPC semantics, simple, but effective, code
optimizations, like the one previous mentioned, to be
exploited.
The plots in Figure 6 are related to the invocation of an
empty service that immediately returns the results to the
client.

Serivce Invocation 10 Tag Input

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15

Number of Clients

In
vo

ca
tio

n
pe

r
S

ec
on

d

Servlet
Servlet RPC
Servlet RPCXML
Web Services

Service Invocation 100 Tag Input

0
200
400
600
800

1000
1200
1400
1600

1 3 5 7 9 11 13 15

Number of Clients

In
vo

ca
tio

n
pe

r S
ec

on
d

Servlet
Servlet RPC
Servlet RPCXML
Web Services

service Invocation 1000 Tag Input

0

50

100

150

200

250

1 3 5 7 9 11 13 15

Number of Clients

In
vo

ca
tio

n
pe

r S
ec

on
d

Servlet
Servlet RPC
Servlet RPCXML
Web Services

Figure 6: Handled request per second

As we can see, once again, the cost of WS in terms of
number of handled requests per second is not negligible,
and limits scalability since the number of invocations per
second does not increase when we raise the number of
clients. Finally, as one can expect, when messages are
short and less complex (in terms of XML tags) the
throughput is better than when messages are large and
more complex.
As point in the introduction of this paper, we want
increase the WS interactivity in a scenario where the
exchanged messages between components are short so we
decide to focus our attention on parsing algorithms in
order to reduce the un-marshalling computational time.

Next paragraph present our solution that strongly reduce
the overhead due to the XML use.

3. Cache Parser: an overview

In this section we present a high level view of our parsing
algorithm, while in the next sections we will discuss in
more detail each step of the algorithm.
As already mentioned in the Introduction, the goal is to
cache a set of information related to XML Document
syntactic trees for fast parsing similar documents
contained in SOAP messages. In particular, we use a
checksum, which is exchanged between the Sender and
the Receiver of a given SOAP message. This checksum is
used by the Receiver to detect whether a received
document is “well formatted”, and whether it shares the
syntactic tree with an already parsed one. In addition, the
Sender includes also a set of pointer to quickly retrieve
information between XML tags. In other words we
introduce cooperation between Sender and Receiver.
Since in a WS-based middleware, XML data are
encapsulated in XML/SOAP messages, the Sender can
include this checksum and the other information in the
header of the message, in order to allow the receiver to
fast distinguish between XML messages with different
structures.
Like DOM [14], also our Cache-Parser exploits the
syntactic tree of an XML document. However, in case
another document with the parsing tree has been already
encountered, we do not need to build a new syntactic tree
from scratch, because we can just navigate an already
built one to know where to take the relevant information
in the new document. In other words, we just need a visit
of a tree structure of the document, instead of a tree
construction. Unlike Deltarser [9], in the server-side
cache we memorize all information about this tree, plus a
set of pointers that allow us to have a “quick jump” to the
information needed, without parsing the tag.
In paragraphs we will see in detail the 3 main part of the
algorithm:

• The hashing of a received Document;
• The algorithm core that uses the cached

information;
• The cache insertion/replacement strategy.

3.1. Hashing a Document

This subroutine in the receiver side must accomplish the
following two tasks:

• To recognize if the new document syntactic tree
is already known;

• To find the right entry in the cache data
structure.

Achieving the second task is simple, if we can “well
recognize” a document tree structure. All what we need is
just an associative memory, where to store information
using as a key a checksum computed over the syntactic
tree of documents.
On the other hand, to accomplish the first task, the Sender
of an XML document has to create the associated
checksum: it is a hash key obtained from a syntactic tree
representation of the XML document. This representation
simply is a parenthesized string, summarizing the nesting
of XML elements/attributes and the associated tags. Note
that, since we are interested in characterizing the specific
syntactic tree of a document, the representation used to
compute the checksum does not include the information
contained between tags. The Sender stores the computed
checksum value in the SOAP Header, and sends it to the
receiver together with the XML document.

3.2. Cache Algorithm

We show how our caching technique can be exploited
using the same API of a Pull parser, even if we can it in
any possible parser scenarios. The Pull parsers are the
fastest ones developed till now. Using such parsers, the
user asks for the information referring to a given tag, and
provides a handler to elaborate the information between
the tags.
The main difference between our cache-based algorithm
and a standard Pull parser is that the Receiver can take
advantage of the XML-Document tree structure
knowledge, by quickly retrieving the information that
must be passed to the specific handler.
If we have a cache hit we can assume that:

• NewXMLdocument shares a previous analyzed
document syntactic tree;

• There exists a cache entry that stores “all the
interesting information” about the syntactic tree
of the NewXMLdocument;

First, the handler (user API) notifies that it wants to know
the information associated to a particular tag (i.e., <login>
see Figure 7). The Cache Parser algorithm “core” asks the
cache to know where the information is memorized in the
XML document. The cache returns the positions where
the needed information can be found in the XML
document. Finally we can give such information to the
handler by using just a string copy.
In conclusion, by using this algorithm, we achieve a “well
and fast” information retrieval from the XML document,
if its syntactic tree is already known. Figure 7 gives an
idea of what we need to memorize inside a cache entry.
It is worth noting that typical XML documents are more
complex than the one we took as an example. In
particular:

• Information contained between Tags normally does
not have the same length.

• Tags have also attributes, and the lengths of their
values may not be the same.

• Documents that share the same syntactic tree can
have different tag start position.

• An XML document may use namespaces [27] to
avoid collisions among tag names or attribute
names, so an XML parser must handle namespaces
for documents that use them.

Figure 7: XML parsed document with pointer to the
nodes

Therefore, in order to quick retrieve relevant information
from a document, in the general case a Receiver needs to
know the tag value start and end position. Our idea is that
the Sender adds this information in a tagged element that
we call “Map”. We have to point out that this new
element can be part of the SOAP Header, in order to not
modify the original document.
Adding the “Map”, we can know when the information
associated with a Tag starts and finishes, just interpreting
this attribute and without parsing the entire Tag
information.
Note that the Map information refers to the associated
(tree structured) Tags of the document. So it must be
parsed to extract the right start/end positions of a given
XML element.
In common use, typical data structure appearing in SOAP
messages exchanged between Sender and Receiver are
vectors. In out test case we noted situations where the
numbers of vector elements are different, even if the
structure of the message is the same. This poses serious
problems to our cache parser, since the syntactic trees of
two XML documents appear to be different when each
vector element is stored as a distinct XML element. Our
cache parse treats the two documents as completely
different, thus storing their parsing information in
different cache entries.. In order to reduce the memory
usage and increase the cache hit rate without slowing
down the algorithm, we can take into account how many

sequential repetitions of the same Tag are present in the
received XML-document. With this additional
information, that it is stored in the SOAP header, two
XML documents that only differ for a vector size, can be
memorized in only one cache entry, just changing the way
in which the document checksum is computed.

3.4. Cache Insertion/Replacement Strategy

Thinking of a cache insertion and replacement strategy
we have to note that:
• Add a new cache entry cost time and this could not be

a good investment if the document is not frequently
exchanged between sender and receiver.

• Each cache entry memory as not a fix memory size and
the exchanged XML-Document could be big with a
consequential rapidly increases of the cache size.

We choose to adopt a Least Recently Used (LRU) cache
replacement policy. In our use case the number of
different XML messages exchanged is small so a little
quantity of memory suffices to store all the information
associated with all the different messages received

4. Parser Comparison

Parsers break documents into pieces such as start tags,
end tags, attribute, value pairs, chunks of text content,
processing instructions, comments, and so on. These
pieces are fed to the application using a well-defined API,
implementing a particular parsing model. Four parsing
models are commonly in use [15], [16], [17], [18]:

One-step parsing (DOM): the parser reads the whole
XML document, and generates a data structure (a parse
tree) describing its entire contents.
Push parsing (SAX): the parser sends notifications to the
application about the types of XML document pieces it
encounters during the parsing process. Notifications are
typically implemented as event callbacks in the
application code.
Pull Parsing: the application always asks the parser for
the next piece of information appearing in the document
associated with a given element. It is as if the application
has to “pull” the information out of the parser, and hence
the name of the model.
Hybrid Parsing: this approach tries to combine different
characteristics of the other parsing models to create
efficient parsers for special scenarios.
Cache Parsing: we decide to adopt the pull-parsing
approach, though in principle our technique can be used
in conjunction with any other parser. As previously
discussed, we maintain information about already parsed
syntactic tree XML document to fast parse new document
sharing the same XML tree.

4.1 Lower Bound of a Parser Algorithm

For better understanding the parsers behaviors, and to
know “how good” the cache parser is, we try to estimate
the intrinsic limit of an XML un-marshaling process
elaboration phase. For computing this upper bound, we
suppose that the parser already knows if a document is
well formatted (so it does not need a validation phase)
and that we can exactly know where the requested
information is stored in the document. Under such
hypothesis, a parser process is just a string transfer from
the XML-document to a memory location. As we will see
in the following, this limit is very distant from the
actually parsers performance, but using our Cache Parser
we can bring it close to this limit.

4.2 Parser benchmark

 We performed two different tests to compare different
parsing algorithms and the new Cache Parser. First we
tested the fastest Java parsers available by parsing for
100,000 times a set of XML documents, and we
compared them with our Cache Parser.
We performed these tests in both UNIX and Windows
Systems, with different hardware configurations. We
noted that the test outcomes are OS independent. Below
we report only the values for a Unix System.
The absolute time obviously depends on the hardware
equipment of the server, but, as shown in Column 3 of the
Table 1, the relative time with respect to the Pull Parser
time is an independent value.

Table 1: Parser Comparison
Parser Name: Parsing

Time:
Time / Pull Parser Time

DOM2 71658 ms 0,38
SAX 78573 ms 0,346
SAX2 49081 ms 0,555
Pull Parser 27219 ms 1
Cache Parser 1062 ms 25,63
Lower Bound 280 ms 97,211

To complete the tests, we evaluated the Cache Parser in a
typical client-server scenario, where clients send an XML
document to a servlet container (that is the base for any
WS and Grid Services).The server receives the document,
parses it and sends back to the clients a “done” message.
The test results are show in the Table 2.
As we can see, if we use the Cache Parser, we can really
improve the receiver part of a generic sender/receiver
system. We have to point out that the Cache Parser
requests more operations on the sender side, like the
additional tags and the hash key preparation. In the Table

3 we quantify this overhead, by measuring this additional
cost on the sender side. We perform this measure sending
100,000 times a set of small XML documents (from 10 to
15 tags) first using the standard WS serialization and
second adding in the SOAP header the additional
information that the Cache parser needs. As we can see,
since the sender can prepare the additional information
when is building the “traditional” document, this do not
impact on the information XML serialization

Table 2: Parser Comparison
Parser Name: invocation per sec
SAX2 1500
Parser Upper Bound 3050
Pull Parser 1830
Cache Parser 2820

Table 3: Document Preparation Additional Cost

Standard Parser Cache Parser Cache Parser /
 Standard Parser

171082 ms 173193 ms 1,012

5. Conclusion

The Web Services fully solve the “global enterprise
integration” problem, but the proposed solution seems to
exhibit a poor performance, and we believe that this could
pose serious limitations on their actual applicability, as
the number of commercial users will increase.
As shown in paragraph 2 we also believe that one of the
limitations in using a full WS approach for implementing
complex and highly interactive systems, comes from the
large de-marshalling costs incurred on the receiver sides.
To solve this problem, we have designed a new parser:
the Cache Parser. It is able to “well and quickly” retrieve
information from XML documents, using previous
knowledge about the document syntactic tree. In
particular, our Cache Parser, which is used to de-marshal
XML messages on the receiver side:

• Uses a checksum to detect if a new document is
“well formatted”, and to know if it shares the
syntactic tree with an already parsed one.

• Takes advantage of this XML-Document
syntactic tree stored in a cache.

• It is based on a strict collaboration between
sender and receiver.

• Consistently reduces the receiver parse time,
without increasing the sender document creation
time.

This algorithm is 25 time faster than a pull parser and if
used in a WS scenario it can allow a 1.54 performance
improvement factor in term of request handled per
second. Finally it can be applied in any scenario where
the client and the server decide to cooperate.

Acknowledgement

The GridCC project is supported under EU FP6 contract
511382.

6. References

[1] XML Specification: http://www.w3.org/TR/REC-xml/
[2] UDDI Specification. Version 2.0, 3.0.
 http://www.uddi.org/specification.html. 2005.
[3] Simple Object Access Protocol (SOAP) 1.1/1.2 W3C

http://www.w3.org/TR/SOAP/. 2005
[4] W3C. Web Services Description language (WSDL) 2.0.

Note. http://www.w3.org/TR/wsdl20-primer. 2005.
[5] Ian J. Taylor, from P2P to Web Services and Grids, Peers in

a Client/Server World, Springer, October 2004
[6] GridCC Home Page: www.gridcc.org
[7] Gaetano Maron, Angelos Lenis, Sakis Moralis, Mary

Grammatikou, Theodoros Karounos, Symeon Papavassiliou,
Vasilis Maglaris, Paris Sphicas, Symeon Papavassiliou,
Tiziana Ferrari, Constantinos A. Kotsokalis, Andrew Stephen
McGough, Tatiana Kalganova, Peter Hobson, Roberto
Pugliese, Francesco Lelli, David Colling, The GridCC
Architecture(GridCC Architecture design www.gridcc.org)
May 2005. (Authors are in no particular order).

[8] Compact Muon Solenoid project home page:
http://cmsinfo.cern.ch/

[9] Toshiro Takase Hisashi MIYASHITA Toyotaro Suzumura
Michiaki Tatsubori An Adaptive, Fast, and Safe XML Parser
Based on Byte Sequences Memorization The 14th
International World Wide Web Conference, Japan 2005

[10] Daniel Menasce, Daniel A. Menasce, Virgilio A. F. Almeida
Capacity Planning for Web Performance: Metrics, Models,
and Methods (Paperback) Prentice Hall PTR; Bk&CD
Rom edition (May, 1998)

[11] John Blommers, Hewlett-Packard Professional Books
Architecting Enterprise Solutions with UNIX Networking
(Paperback) Prentice Hall PTR; 1st edition (October 15,
1998)

[12] Michael R. Head, Madhusudhan Govindaraju, Aleksander
Slominski, Pu Liu, Nayef Abu-Ghazaleh, Robert van
Engelen, Kenneth Chiu, Michael J. Lewis, "A Benchmark
Suite for SOAP-based Communication in Grid Web
Services", International Conference for High Performance
Computing, Networking, and Storage, Seattle WA,
November 2005.

[13] Satoshi Shirasuna, Hidemoto Nakada, Satoshi Shirasuna,
Satoshi Sekiguchi, 11th IEEE International Symposium on
High Performance Distributed Computing 2002 Evaluating
Web Services Based Implementations of GridRPC.

[14] A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J. Robie, and
M. Champion. Document Object Model (DOM) Level 2
Core Specification Version 1.0, W3C Recommendation,
November 2000. http://www.w3.org/TR/2000/REC-
DOMLevel-2-Core-20001113.

[15] Yuval Oren. Piccolo xml parser for java.
http://piccolo.sourceforge.net/.

[16] C. Fry. JSR 173: Streaming API for XML. Java
Community Process Specification Final Release,March 25,
2004.

[17] The Apache Software Foundation. Apache Xerces.
http://xml.apache.org.

[18] R. Mordani. JSR 63: Java API for XML processing 1.1.
Java Community Process Specification Final Release,
September 10, 2002.

[19]M. C. Chan and T. Y. C. Woo. Cache-based compaction: A
new technique for optimizing web transfer. In Proc.
INFOCOM’99, pages 117–125. IEEE, 1999.

[20]K. Chiu and W. Lu. A compiler-based approach to schema-
specific XML parsing. In Proc. Workshop on High
Performance XML Processing, May 18, New-York, NY,
USA, 2004. Online publication.

[21]D. Davis and M. Parasha. Latency performance of soap
implementations. In Proc. CCGrid’02, Workshop on Global
and Peer-to-Peer on Large Scale Distributed Systems, Berlin,
Germany, May 22-24, 2002, pages 407–412. IEEE
Computer, 2002.

[22]M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss.
Effcient packet demultiplexing for multiple endpoints and
large messages. In Proc. USENIX Winter 1994 Technical
Conference, pages 153–165.USENIX Association, 1994.

[23]K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of SOAP performance for scientific computing. In
Proc. HPDC-11, pages 246–254. IEEE Computer, 2002.

[24]A. L. Hors, P. L. Hegaret, L. Wood, G. Nicol, J. Robie, and
M. Champion. Document Object Model (DOM) Level 2
Core Specification Version 1.0, W3C Recommendation,
November 2000. http://www.w3.org/TR/2000/REC-
DOMLevel-2-Core-20001113.

[25]Investigating the limits of SOAP performance for scientific
computing. In Proc. HPDC-11, pages 246–254. IEEE
Computer, 2002.

[26]S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi.
Evaluating Web Services based implementations of
GridRPC. In Proc. HPDC-11, pages 237–245. IEEE
Computer, 2002.

[26]A. Slominski, M. Govindaraju, D. Gannon, and R. Bramley.
Design of an XML based Interoperable RMI System:
SoapRMI C++/Java 1.1. In Proc. of The 2001 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’2001), June 2001.

[27] T. Bray, D. Hollander, and A. Layman. Namespaces in
XML. W3C Recommendation, January 14, 1999,
http://www.w3.org/TR/1999/REC-xml-names-19990114.
Kaufmann, August 2002.

