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Abstract 
 
The growing synergy between Web Services and Grid-
based technologies is enabling profound, dynamic 
interactions between applications dispersed in 
geographic, institutional, and conceptual space. Such 
deep interoperability requires the simplicity, robustness, 
and extensibility for which XML has been conceived, 
making it a natural lingua franca for the network. Along 
with these advantages, there is a degree of inefficiency 
that may limit the applicability of XML.  
In this paper, we investigate the limitations of XML for 
high-performance and high-interactive distributed 
computing. Our experimental results clearly show that 
focusing on parsers, that are routinely used for desterilize 
XML messages exchanged in these system, we can 
improve the performance of a generic the end to end web 
services based solution. Then we present a new parser, 
the Cache Parser, which uses a cache to reduce the 
parsing time by reusing information related to previously 
parsed documents/messages similar to the one under 
examination. Finally, we will show how our fast parser 
can improve the global throughput of any application 
based on Web or Grid Services, or also JAXP-RPC. 
 
1. Introduction 
 
XML [1] is a mark-up language used for describing 
structured data. An XML document consists of elements 
and their attributes, where each element has a name and is 
characterized by start and end tags. Element’s content is 
included between the tags, and may consist of other 
elements, data or may be empty. Each element may have 
attributes that consist of pairs (name=value). XML 
enables users to introduce elements and attributes, their 
names and their relations in the document, by specifying a 
particular XML syntax (DTD/Xschema). The purpose of 
this syntax is to define the legal building blocks, the 
structure and the list of legal elements of an XML 
document. 

An XML-based set of technologies are those at the basis 
of Web Services (WSs) [2], [3],[4],[5], by which existing 
legacy systems can be wrapped as WSs, and made 
available for integration with other systems. Applications 
exposed as Web services are accessible by other 
applications running on different hardware platforms and 
written in different programming languages. Using this 
approach, the complexity of these systems can be 
encapsulated behind XML/SOAP protocols. 
A common trade-off in computing is between the need of 
universality and performance, and this is particularly true 
when WSs must be exploited to design a system in which 
both high performance and QoS requirements are 
mandatory.  A limit case, in witch fulfilling both such 
requirements is really necessary, is scientific computing, 
which demands the full range of capabilities that 
industrial computing does: reliable transfer in distributed 
heterogeneous environments, parallel programs often 
exchanging data, self-contained modules sending events 
to steer other modules, and complex run-time systems 
designed for heterogeneous environments with 
dynamically varying loads, multiple communication 
protocols, and different Quality of Service (QoS) 
requirements. Unfortunately, the qualities of SOAP that 
make it universally usable tend to lower the 
communication performance. In particular, the features 
that make XML communication inefficient regard the 
primarily ASCII format of XML, and the verbosity of 
XML, due to the need of expressing tags and attributes 
besides the true information content. 
As we will see in session 2, in a WS environment a lot of 
runtime activity is however spent in parsing XML 
documents: every client or server process needs to exploit 
an XML parser to send/receive messages. So speeding up 
the parsing algorithm should have a big impact on the 
total communication time, by largely reducing overheads. 
In particular, we are interested in reducing the overheads 
on the receiver side, where the task of a parser is to 
desterilize the message by checking whether it conforms 
to the DTD/Xschema syntax, and extracting data from the 
textual XML representation. 



We noted that in high performance computing systems 
based on WSs, like contemporary Grids currently 
programmed through Grid Services,( i.e. a technology 
build on top of WSs), each subsystem routinely 
exchanges information by using very similar XML-
formatted messages. The exchanged XML information 
often has the same “structure”, i.e not only the same 
DTD/Xschema syntax, but also the same particular 
syntactic tree. “Standard” parsers do not use this 
information to improve unmarshaling algorithm 
performance, so we develop a cache-based system that 
takes advantage of this behavior. When the system parses 
a new XML document, it first tries if his structure 
matches an already know structure. This is quickly 
carried out by testing a document checksum. In case of a 
cache hit, the document will be parsed with a fast 
algorithm that exploits the stored knowledge on the 
document syntactic tree. Otherwise, the document will be 
analyzed by using a standard parser, and a new cache 
entry will be created to store the syntactic tree of the new 
document. 
Our test-case and our motivating application is the 
Instrument Element (IE) Grid Component, which consists 
of a coherent collection of services, which allow us to 
remotely configure, partition and control a physical 
instrument, and permit this instrument to be better 
integrated into a computational Grid.  The IE has been 
successfully exploited to design several pilot applications 
of our GridCC project [6], [7] and its implementation is 
currently based on WS technologies. Inside this 
component a set of WS interface called VIGS (Virtual 
Instrument Grid Service) allow users to access a real 
instrument, thus also plugging the specific instrument into 
the more traditional Data and Computational Grids.  An 
example of use of this IE is the Compact Muon Solenoid 
(CMS) experiment [8], where the IE is the master 
controller of the Data Acquisition (DAQ) system. The 
problem to solve is when the experiment is taking data, 
since it demands high network traffic. In this case a 
multitude of services interoperate with each other in a 
large LAN composed of about 6000 machines, by using 
XML/SOAP lingua franca for exchanging information. 
As show in Figure 1, the instrument Manager (i.e., an IE 
component ) organizes the elements of a DAQ in sets, 
checks their status, controls the “quality” of theirs 
computing behaviors, and so on. 
The VIGS, i.e. the user interface of our IE, has a static 
structure. In addition the XML documents/messages that 
are exchanged between the IE’s processes and the 
specific instruments are usually characterized by a 
“persistent” structure. Note that in our WS 
implementation such messages are XML-formatted ones, 
which are inserted in SOAP envelopes and then passed 
via HTTP to a receiver that parses it to extract valuable 
data. 

 
 
 
 
 
 
 
 
 
 
 
Figure 1 the Instrument Element Use Case 
 
Since in our use-case the XML documents are short and 
transmitted over a fast network, the idea of reducing the 
transmission delay by compressing the XML messages 
does not seem as good as developing a more efficient 
parsing algorithm based on XML documents persistence, 
thus reducing the overheads on the receiver. 
Even if all the remarks about the persistence of the 
structures of the message are motivated by our specific 
Grid use-case, where a multitude of senders have to send 
multiple times messages characterized by the same 
structure to a small set of receivers, a similar persistence 
in XML messages exchanged can also be observed in 
several other distributed applications based on Web/Grid 
Service technologies. 
The rest of the paper is organized as follows: Section 2 
will present an overview of the considered architecture 
for building our benchmarks and the obtained result. In 
Section 3 we will see our new parsing algorithm in detail, 
by focussing our attention on the issues and adopted 
solutions. In Section 4 we will present the performed test, 
the obtained experimental results. Finally, in Section 5, 
we will show our conclusions. 
 
2. Understanding the XML limit 
 
This paragraph describes a high level and general 
architecture, used to build a generic modern web-based 
application like our IE. This general architecture 
reviewed is applicable across technologies [10], [11] so 
that we use it to understand the limits that an XML 
solution can introduce in term of interactivity and handled 
requests per second. A modern web-based enterprise 
application has 3 layers (see figure 2): 

• A client layer, which is responsible for 
interacting with the user, e.g., byWeb Page 
rendering;  

• A middle tier which includes:  
1. A Presentation Layer which interprets 

user inputs (e.g., her/his submitted 
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HTML forms), and generates the 
outputs to be presented to her/him (e.g., 
a WebPage, including their dynamic 
content).  

2. A Business Logic Layer which enforces 
validations, and handles the interaction 
with the data layer.  

• A data layer, which stores and manage data, 
and offers the handling interface to the upper 
layers. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 3-tier Architecture 
 
This structure allows changes in legacy host access and 
development of new business logic to be kept separate 
from the user interface, dramatically reducing the cost of 
maintenance. Three-tier architectures also enable large-
scale deployments, in which hundreds or thousands of 
end users are enabled to use applications that access 
business information. 
Our motivating application, the Instrument Element, 
follow this abstract architecture: it is just a 3-tier 
application, with a strong separation between the 
Business Layer and the Presentation layer, that use a very 
simple data layer.   
Talking about business to consumer applications, the 
client layer of a web application is implemented as a web 
browser running on the user's client machine.  Its job in a 
web-based application is to display data and let the user 
enter/update data. 
In a business to business scenario the client layer can be a 
generic application, compliant to the web-service 
standard. The presentation sub-layer generates (or 
displays) WebPages, or produces (or interprets) XML-
based SOAP messages in a Web Service scenario. If 
necessary, it may include dynamic content in them.  The 
dynamic content can originate from a database, and it is 
typically retrieved by the Business logic that:  

• performs all required calculations and 
validations;  

• manages workflow (including keeping track 
of session data);  

• manages all the needed data access. 
For smaller web applications, it may be unnecessarily 
complex to have two separate sub-layers in the middle 
tier. In addition the sub-layer communications typically 
do not use XML.  
From a temporal point of view (showed in figure 3) a 
client (Web Services, web browser, java, c++, etc) 
performs a request to the business logic that dynamically 
retrieves the requested information. During the 
elaboration phase, the server can either perform one or 
more queries to a persistent storage, or interact with other 
sub-business unit. Once the information is retrieved, the 
server formats the retrieved information in a way that the 
client is able to understand, and sends it back to the client.  
 
 
 
 
 
 
 
 
 
 
Figure 3 3-tier Sequence diagram 
 
In a Web Service scenario, the clients need to exploit a 
further SOAP protocol layer over HTTP communications, 
while in human client scenario they the communication 
can be made just via HTTP.   
The purpose of the next session is understood the real 
costs of the validation and reply formatting phases, by 
also varying the used technology. We setup a set of tests, 
using a synthetic application that follows the mentioned 3 
layer architecture.   
Others benchmark was already published on SOAP 
performance, but our approach differ from the ones 
discussed in [12] and [13]. What we would like to 
evaluate is the WS behaviour in a real scenario, 
understanding WS limits and giving the reader a clear 
idea of when the WS approach fails. In particular we will 
focus our attention on WSs exchanging short messages on 
a LAN network, which is the typical setting of our 
motivating application. 

 
2.1. 3-tier Test bed: 
 
In order to reproduce the architecture presented at the 
beginning of this paragraph, in the same local LAN we 
set up two different server machines, the former hosting 



an Oracle DB Server as a storage system, and the latter 
hosting a Tomcat Application Server as a Middle Tier. 
Then we run a set of clients on other different machines 
in the same cluster. 
 The hardware used in this test is:  

• Database Server: Dual Xeon 1.8 GHz, with 2 
GB RAM, Ethernet 1 Gbps, OS Red Hat Linux 
Advanced Server 2.1. 

• Application Server: Dual Xeon1.8 GHz, with 
1.5 GB RAM, Ethernet 1 Gbps, OS Red Hat 
Linux Advanced Server 2.1. 

• Clients: 25 Pentium III 600 MHz, with 256 MB 
RAM, Ethernet 1 Gbps, OS Linux Red Hat 9.0. 

As Client/Server communications we used: 
• Simple HTTP  
• SOAP/XML over HTTP 

Within the same Tomcat server, we also set up an Axis 
engine, in order to evaluate the performance of a WS 
communication (i.e., SOAP/XML+HTTP with automatic 
generated stubs) between client and server.  
The DB table structure and the complexity of the queries 
are really simple (e.g., 1 table, with 5 attribute, as DB 
structure).  
Our benchmark is thus the following: the clients (java 
applications) perform a request to a Tomcat Servlet or to 
Web Service. The business logic layer, in order to present 
the result to the client, performs a query using a pre-
generated JDBC connection, to the data base server.  
Then the same layer formats the result and sends it to the 
client.  
In this scenario we evaluate both the response time of a 
single client connection, and the global application server 
throughput in term of satisfied requests per second. The 
results are shown in next paragraph.    
 
2.3 Service Request Time 
 
We first measured the service request time, just using one 
client. Therefore we can assume that both the application 
server and the data base server are not busy, since they 
have to serve one request at a time. 
Figure 4 shows the average times when using either 
servlet or Web Service technology.  

 

 
Figure 4:  Service request time for servlet and WS  
 
As we can see the total delay time of the WS (100 ms) is 
greater than the servlet one (16 ms). We can also note that 
the most of the request time is spent during the 
SOAP/XML serialization / de-serialization of the objects 
exchanged between the client and the server. 
We have to note that the marshalling and un-marshalling 
process only depends on the exchanged data, and not on 
the complexity of the elaboration phase. This means that 
the WS cost, in terms of service delay, is important and 
non negligible for real time or interactive applications, 
where the final user/program typically needs a reply in a 
short amount of time. For non interactive service, this 
delay is acceptable.  
 
2.4. Handled Request per Second 
 
According with the scenario described in session 2 we 
also performed a test aimed to understand the number of 
requests handled per second in two different scenarios. In 
the first one, a servlet or a Web Service, once invoked, 
performs a query on the storage system and sends back 
the result. In the second scenario, we remove the Data 
Layer in order to exactly measure the service invocation 
time.  
The plots in Figure 5 are related to the first performed 
measure.  
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Figure 5:  Handled request per second using a storage 
tier 
The “ServletRPCXML” curve refers to a servlet that does 
exactly the same web service actions: in particular, it 
sends back to the client the result only at the end of the 
preparation of the result layout. The “ServletRPC” refers 
to a servlet that do exactly the same job of the previous 
one but the exchanged information are serialized in 
simple HTTP, while the “Servlet” curve differs from the 
first because, instead of buffering the result and sending it 
at the end of the preparation phase, it immediately starts 
sending it in a streaming way using an HTTP custom 
serialization  
Finally, we can note that the performance of WS is 
similar to “ServletRPCXML”. This means that its large 
performance decrease is due to both, buffering of the 
result and XML serialization, since clients and server 
have additional computational and synchronization 
overhead.  As we can see, WS infrastructure introduces a 
remarkable performance overhead, and can not allow, due 
to the adopted RPC semantics, simple, but effective, code 
optimizations, like the one previous mentioned, to be 
exploited. 
The plots in Figure 6 are related to the invocation of an 
empty service that immediately returns the results to the 
client.   
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Figure 6: Handled request per second   
 
As we can see, once again, the cost of WS in terms of 
number of handled requests per second is not negligible, 
and limits scalability since the number of invocations per 
second does not increase when we raise the number of 
clients. Finally, as one can expect, when messages are 
short and less complex (in terms of XML tags) the 
throughput is better than when messages are large and 
more complex. 
As point in the introduction of this paper, we want 
increase the WS interactivity in a scenario where the 
exchanged messages between components are short so we 
decide to focus our attention on parsing algorithms in 
order to reduce the un-marshalling computational time. 



Next paragraph present our solution that strongly reduce 
the overhead due to the XML use.  
 
3.  Cache Parser: an overview 
 
In this section we present a high level view of our parsing 
algorithm, while in the next sections we will discuss in 
more detail each step of the algorithm. 
As already mentioned in the Introduction, the goal is to 
cache a set of information related to XML Document 
syntactic trees for fast parsing similar documents 
contained in SOAP messages. In particular, we use a 
checksum, which is exchanged between the Sender and 
the Receiver of a given SOAP message. This checksum is 
used by the Receiver to detect whether a received 
document is “well formatted”, and whether it shares the 
syntactic tree with an already parsed one. In addition, the 
Sender includes also a set of pointer to quickly retrieve 
information between XML tags. In other words we 
introduce cooperation between Sender and Receiver. 
Since in a WS-based middleware, XML data are 
encapsulated in XML/SOAP messages, the Sender can 
include this checksum and the other information in the 
header of the message, in order to allow the receiver to 
fast distinguish between XML messages with different 
structures.  
Like DOM [14], also our Cache-Parser exploits the 
syntactic tree of an XML document. However, in case 
another document with the parsing tree has been already 
encountered, we do not need to build a new syntactic tree 
from scratch, because we can just navigate an already 
built one to know where to take the relevant information 
in the new document. In other words, we just need a visit 
of a tree structure of the document, instead of a tree 
construction. Unlike Deltarser [9], in the server-side 
cache we memorize all information about this tree, plus a 
set of pointers that allow us to have a “quick jump” to the 
information needed, without parsing the tag.  
In paragraphs we will see in detail the 3 main part of the 
algorithm:  

• The hashing of a received Document; 
• The algorithm core that uses the cached 

information; 
• The cache insertion/replacement strategy. 

 
3.1. Hashing a Document 
 
This subroutine in the receiver side must accomplish the 
following two tasks:  

• To recognize if the new document syntactic tree 
is already known;  

• To find the right entry in the cache data 
structure. 

 

Achieving the second task is simple, if we can “well 
recognize” a document tree structure. All what we need is 
just an associative memory, where to store information 
using as a key a checksum computed over the syntactic 
tree of documents.  
On the other hand, to accomplish the first task, the Sender 
of an XML document has to create the associated 
checksum: it is a hash key obtained from a syntactic tree 
representation of the XML document. This representation 
simply is a parenthesized string, summarizing the nesting 
of XML elements/attributes and the associated tags. Note 
that, since we are interested in characterizing the specific 
syntactic tree of a document, the representation used to 
compute the checksum does not include the information 
contained between tags. The Sender stores the computed 
checksum value in the SOAP Header, and sends it to the 
receiver together with the XML document.  
 
3.2. Cache Algorithm  
 
We show how our caching technique can be exploited 
using the same API of a Pull parser, even if we can it in 
any possible parser scenarios. The Pull parsers are the 
fastest ones developed till now. Using such parsers, the 
user asks for the information referring to a given tag, and 
provides a handler to elaborate the information between 
the tags.  
The main difference between our cache-based algorithm 
and a standard Pull parser is that the Receiver can take 
advantage of the XML-Document tree structure 
knowledge, by quickly retrieving the information that 
must be passed to the specific handler.  
If we have a cache hit we can assume that: 

• NewXMLdocument shares a previous analyzed 
document syntactic tree; 

• There exists a cache entry that stores “all the 
interesting information” about the syntactic tree 
of the NewXMLdocument; 

First, the handler (user API) notifies that it wants to know 
the information associated to a particular tag (i.e., <login> 
see Figure 7). The Cache Parser algorithm “core” asks the 
cache to know where the information is memorized in the 
XML document. The cache returns the positions where 
the needed information can be found in the XML 
document. Finally we can give such information to the 
handler by using just a string copy. 
In conclusion, by using this algorithm, we achieve a “well 
and fast” information retrieval from the XML document, 
if its syntactic tree is already known. Figure 7 gives an 
idea of what we need to memorize inside a cache entry. 
It is worth noting that typical XML documents are more 
complex than the one we took as an example. In 
particular:  



• Information contained between Tags normally does 
not have the same length.  

• Tags have also attributes, and the lengths of their 
values may not be the same. 

• Documents that share the same syntactic tree can 
have different tag start position. 

• An XML document may use namespaces [27] to 
avoid collisions among tag names or attribute 
names, so an XML parser must handle namespaces 
for documents that use them. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: XML parsed document with pointer to the 
nodes   
 
Therefore, in order to quick retrieve relevant information 
from a document, in the general case a Receiver needs to 
know the tag value start and end position. Our idea is that 
the Sender adds this information in a tagged element that 
we call “Map”. We have to point out that this new 
element can be part of the SOAP Header, in order to not 
modify the original document. 
Adding the “Map”, we can know when the information 
associated with a Tag starts and finishes, just interpreting 
this attribute and without parsing the entire Tag 
information.  
Note that the Map information refers to the associated 
(tree structured) Tags of the document. So it must be 
parsed to extract the right start/end positions of a given 
XML element.   
In common use, typical data structure appearing in SOAP 
messages exchanged between Sender and Receiver are 
vectors. In out test case we noted situations where the 
numbers of vector elements are different, even if the 
structure of the message is the same. This poses serious 
problems to our cache parser, since the syntactic trees of 
two XML documents appear to be different when each 
vector element is stored as a distinct XML element. Our 
cache parse treats the two documents as completely 
different, thus storing their parsing information in 
different cache entries.. In order to reduce the memory 
usage and increase the cache hit rate without slowing 
down the algorithm, we can take into account how many 

sequential repetitions of the same Tag are present in the 
received XML-document. With this additional 
information, that it is stored in the SOAP header, two 
XML documents that only differ for a vector size, can be 
memorized in only one cache entry, just changing the way 
in which the document checksum is computed. 
 
3.4. Cache Insertion/Replacement Strategy  
 
Thinking of a cache insertion and replacement strategy 
we have to note that: 
• Add a new cache entry cost time and this could not be 

a good investment if the document is not frequently 
exchanged between sender and receiver. 

• Each cache entry memory as not a fix memory size and 
the exchanged XML-Document could be big with a 
consequential rapidly increases of the cache size. 

We choose to adopt a Least Recently Used (LRU) cache 
replacement policy. In our use case the number of 
different XML messages exchanged is small so a little 
quantity of memory suffices to store all the information 
associated with all the different messages received  

 
4. Parser Comparison  
 
Parsers break documents into pieces such as start tags, 
end tags, attribute, value pairs, chunks of text content, 
processing instructions, comments, and so on. These 
pieces are fed to the application using a well-defined API, 
implementing a particular parsing model. Four parsing 
models are commonly in use [15], [16], [17], [18]: 
 
One-step parsing (DOM): the parser reads the whole 
XML document, and generates a data structure (a parse 
tree) describing its entire contents. 
Push parsing (SAX): the parser sends notifications to the 
application about the types of XML document pieces it 
encounters during the parsing process. Notifications are 
typically implemented as event callbacks in the 
application code. 
Pull Parsing: the application always asks the parser for 
the next piece of information appearing in the document 
associated with a given element. It is as if the application 
has to “pull” the information out of the parser, and hence 
the name of the model. 
Hybrid Parsing: this approach tries to combine different 
characteristics of the other parsing models to create 
efficient parsers for special scenarios. 
Cache Parsing: we decide to adopt the pull-parsing 
approach, though in principle our technique can be used 
in conjunction with any other parser. As previously 
discussed, we maintain information about already parsed 
syntactic tree XML document to fast parse new document 
sharing the same XML tree. 



 
4.1 Lower Bound of a Parser Algorithm 
 
For better understanding the parsers behaviors, and to 
know “how good” the cache parser is, we try to estimate 
the intrinsic limit of an XML un-marshaling process 
elaboration phase. For computing this upper bound, we 
suppose that the parser already knows if a document is 
well formatted (so it does not need a validation phase) 
and that we can exactly know where the requested 
information is stored in the document. Under such 
hypothesis, a parser process is just a string transfer from 
the XML-document to a memory location. As we will see 
in the following, this limit is very distant from the 
actually parsers performance, but using our Cache Parser 
we can bring it close to this limit. 
 
4.2 Parser benchmark  
 
 We performed two different tests to compare different 
parsing algorithms and the new Cache Parser. First we 
tested the fastest Java parsers available by parsing for 
100,000 times a set of XML documents, and we 
compared them with our Cache Parser. 
We performed these tests in both UNIX and Windows 
Systems, with different hardware configurations. We 
noted that the test outcomes are OS independent. Below 
we report only the values for a Unix System. 
The absolute time obviously depends on the hardware 
equipment of the server, but, as shown in Column 3 of the 
Table 1, the relative time with respect to the Pull Parser 
time is an independent value. 
 
Table 1: Parser Comparison   
Parser Name: Parsing 

Time: 
Time / Pull Parser Time 

DOM2 71658 ms 0,38 
SAX 78573 ms 0,346 
SAX2 49081 ms 0,555 
Pull Parser 27219 ms 1 
Cache Parser 1062 ms 25,63 
Lower Bound 280 ms 97,211 
 
To complete the tests, we evaluated the Cache Parser in a 
typical client-server scenario, where clients send an XML 
document to a servlet container (that is the base for any 
WS and Grid Services).The server receives the document, 
parses it and sends back to the clients a “done” message. 
The test results are show in the Table 2. 
As we can see, if we use the Cache Parser, we can really 
improve the receiver part of a generic sender/receiver 
system. We have to point out that the Cache Parser 
requests more operations on the sender side, like the 
additional tags and the hash key preparation. In the Table 

3 we quantify this overhead, by measuring this additional 
cost on the sender side. We perform this measure sending 
100,000 times a set of small XML documents (from 10 to 
15 tags)  first using the standard WS serialization and 
second adding in the SOAP header the additional 
information that the Cache parser needs.  As we can see, 
since the sender can prepare the additional information 
when is building the “traditional” document, this do not 
impact on the information XML serialization  
 
Table 2: Parser Comparison   
Parser Name: invocation per sec 
SAX2 1500 
Parser Upper Bound 3050 
Pull Parser 1830 
Cache Parser 2820 
 
Table 3: Document Preparation Additional Cost 

Standard Parser Cache Parser Cache Parser / 
  Standard Parser  

171082 ms  173193 ms 1,012 
 
5. Conclusion  
 
The Web Services fully solve the “global enterprise 
integration” problem, but the proposed solution seems to 
exhibit a poor performance, and we believe that this could 
pose serious limitations on their actual applicability, as 
the number of commercial users will increase.  
As shown in paragraph 2 we also believe that one of the 
limitations in using a full WS approach for implementing 
complex and highly interactive systems, comes from the 
large de-marshalling costs incurred on the receiver sides. 
To solve this problem, we have designed a new parser: 
the Cache Parser. It is able to “well and quickly” retrieve 
information from XML documents, using previous 
knowledge about the document syntactic tree. In 
particular, our Cache Parser, which is used to de-marshal 
XML messages on the receiver side: 

• Uses a checksum to detect if a new document is 
“well formatted”, and to know if it shares the 
syntactic tree with an already parsed one.  

• Takes advantage of this XML-Document 
syntactic tree stored in a cache. 

• It is based on a strict collaboration between 
sender and receiver. 

• Consistently reduces the receiver parse time, 
without increasing the sender document creation 
time.  

This algorithm is 25 time faster than a pull parser and if 
used in a WS scenario it can allow a 1.54 performance 
improvement factor in term of request handled per 
second. Finally it can be applied in any scenario where 
the client and the server decide to cooperate.  
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