
Fast Information Transport for an Instrument Enabled Grid

E. Frizziero#, Z. Har'El*, F. Lelli#, B. Mandler*, G. Maron#, P. Molini#, S. S. Pinter*
#INFN - Laboratori Nazionali di Legnaro,

Viale dell'Università 2, 35020 Legnaro (PD), ITALY
{frizziero, lelli, maron, molini}@lnl.infn.it

*IBM - Haifa Research Lab., Haifa University Campus,
 Mount Carmel, Haifa, 31905, Israel

{zharel, mandler, shlomit}@il.ibm.com

Abstract

Grid-based computing frameworks leverage

underutilized processing and storage resources. We
present and evaluate a new high-performance, reliable
middleware layer that can incorporate instruments into
a grid. This Java based messaging system supports
remote distributed control and operation of scientific
instruments, such as sensors and probes, thereby
significantly expanding the grid’s capabilities.

Various comparative measurements show that our
system outperforms the top-ranked publish-subscribe
Java systems in the market. Our software can reach a
peak message exchange rate of 900,000 messages per
second, with a latency of less than half a millisecond
on a 1 GB Ethernet switch.

1. Introduction

Traditional developments in Grid technologies have
concentrated on providing batch access to distributed
computational and storage resources. The requirements
to access, control, and acquire data of widely
networked distributed instruments, trigger the need to
include scientific equipment such as sensors and probes
in the Grid world. This, in turn, raises the need for
supporting real-time and reliable interactive work, thus
opening a new frontier of research and development in
this field.

The GridCC project [21] launched in September
2004 by the European Union addresses these issues.
The goal of GridCC is to exploit Grid opportunities for
secure and collaborative work of distributed teams to
remotely operate and monitor scientific equipments,
and to utilize the Grid’s massive memory and

computing resources for storing and processing data
generated by these kinds of equipments.

For this purpose, we are participating in the effort to
develop the novel concept of an Instrument Element
(IE) [40] that offers a standard Web service interface to
integrate instrumentation within the Grid and methods
to aggregate different instruments that belong to
different Virtual Organization (VO) for achieving a
common goal. It provides a simple abstraction of a
generic instrument based on services, like the catalogue
provision of the instruments controlled by an IE and
their description. The remote operations require
reliable fast response time with high throughput for
controlling the equipments and for consuming the
results.

Clearly, the adoption of Web Service (WS)
technology as basic building blocks for the
instrumentation part of the IE, and in particular the use
of SOAP over HTTP, guarantees the interoperability of
the implemented services and enables the leveraging of
related infrastructure like service discovery [20],
security and encryption, and workflow management
[22]. However, the modest performance of a Web
service-based communication network, limits its use to
those cases where high bandwidth and fast response
time are not required. In the case of IE, most of the
control operations require response time on the order of
a fraction of a second. This is achieved by present Web
service platforms [7, 39]. However, this response time
is not adequate for intercommunication between
instruments and for transferring the large quantity of
data generated by the equipments; in these cases the
bandwidth requirement can be very high [35, 36].

Grid tools [23, 24] for moving files can be used in
situations where a file is produced by the permanent

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.26

253

Third IEEE International Conference on e-Science and Grid Computing

0-7695-3064-8/07 $25.00 © 2007 IEEE
DOI 10.1109/e-Science.2007.26

253

cache of the IE. During immediate consumption of data
or when inter instrument data is exchanged, a fast end-
to-end message and/or streaming based communication
channel must be established with the peers requiring
the data; in addition, since many peers usually require
copies of the same data [17], the use of a SOAP-based
protocol is clearly not adequate. Instead, a message
based system that guaranties high throughput with low
latency, and one-to-many data delivery is more
appropriate. Fig. 1 provides a detailed description of
the mentioned use cases:

Fig. 1 Typical environment for a grid of instruments

For accomplishing their functionality the instruments
need to exchange and filter the generated data using
high performance connection network, while at the
same time, users around the world want to control the
entire system and monitor the on going activity.
Performance and scalable architecture are the most
important issues in one of our use cases in the field of
high energy experiments [35, 36].

To provide a solution for the above requirements
and scenario, and for improving performance and
usability, we developed RMM-JMS [18], a publish
subscribe Java Message Service (JMS) based
implementation, on top of our high performance
Reliable Multicast Messaging (RMM) layer [19]. This
enables the IE to have high-throughput low-latency
reliable transport services designed for one-to-many
data delivery or many-to-many data exchange in a
message-oriented middleware publish/subscribe
fashion, which is also JMS compliant. RMM-JMS
supports peer-to-peer communication in both brokered
and broker-less modes. The broker or bridge is mainly
used, whenever we have more than a single multicast
domain (e.g., two LANs).

This paper presents and evaluates RMM-JMS and its
broker/bridge extension; we compare the performance
of our current implementation with the fastest JMS
systems in the market [3]. Experimental results show
that our system outperforms existing message
distribution systems; in particular, a single RMM-JMS
node can receive or dispatch more than 900000

messages per second with latency less than half a
millisecond while handling data at more than
90MBytes/sec. Under the same conditions top JMS
based systems handled less than 5000 messages/sec.
(18MBytes/sec).

The rest of this paper is organized as follows:
Section 2 presents related work outlining different
software architectures that address similar aspects.
Section 3 describes RMM-JMS broker/bridge. The
experiments and the results obtained for different
benchmarks and different systems are presented in
Section 4. Finally, in Section 5 we discuss our
conclusions and future work.

2. Related Work

Several attempts have been made to integrate
heterogeneous high-performance data producers, like
instruments, into a complex and distributed framework
like the Grid. The majority refer to WS based Service
Oriented Architecture (SOA) and to Publish/Subscribe
approach. CIMA [1] proposes a common instrument
middleware based on Web Services using SOAP over
HTTP as a communication layer. JXTA Project [2]
attempts to provide a common language (both C++ and
java implementation are provided) and platform to be
used by all peers. The JXTA environment and language
are built around Jxta protocols that are defined via
textual representation (i.e., XML) and Jxta pipes. A
WS-based standard, WS-Notification [5], describes
asynchronous publish/subscribe notification models
that can be used for listening to remote service data
element updates; WSRF based framework like Apache-
WSRF [37] and WSRF.NET [38] use this standard. In
RGMA [6], the information resources of a virtual
organization (VO) are presented as a single virtual
database that contains a set of virtual tables and
provides access to this information via a WS interface.
The Java Management Extensions (JMX) [8]
technology is an open system for management and
monitoring; via its instrumentation, agent, and
distributed services layers, it can be used for adapting
legacy systems, implementing new management tools,
and providing monitoring solutions. Jini [9] attempts to
provide mechanisms to enable adding, removing, and
locating devices and services on the network on top of
RMI.

The Java Message Service (JMS) defines a common
set of API [33] that allows different peers of a
distributed system to communicate in a
publish/subscribe message or streaming based way.
Several vendors provide JMS implementation in C,
C++, C#, Ruby, Perl, Python, and PHP [14, 25, 28] in

254254

order to glue the different parts of a distributed system.
Many JMS MessageQueue-based systems, like
Naradabrokering [10, 4], JBossMQ [11], JORAM[12],
OpenJMS [13], ActiveMQ[14], Arjuna[15], Sun
Message Queue [16] FioranoMQ [27] and others [26,
29, 30, 31], have been developed for providing a
messaging middleware that allows the interoperation
between distributed components of a system. The
majority of the implementations utilize a centralized,
customizable component that provides the JMS
services like publish/subscription and message filtering
capabilities. Other implementations like Mantaray [32]
utilize a unicast P2P approach. We propose, by
implementing RMM-JMS, a P2P multicast approach
built on a distributed Reliable Multicast Messaging
(RMM) middleware that enables high throughput low
latency reliable messaging and streaming distribution.

2.1 Centralized Brokered Message Oriented
Middleware

In this type of architecture both the publishers and
the subscribers are linked to each other via a
centralized component – a broker – that handles topics,
message filtering and persistence.

Several implementations provide the possibility to
clusterize the broker in order to increase the
performance of the entire system. Fig. 2 is an example
of such architecture.

Fig. 2 Centralized (Brokered) Publish Subscribe Architecture

The main advantage of this approach is the
possibility to reduce the complexity of the publisher
and the subscriber by moving some capabilities to the
broker (external entity).

However, this approach introduces a single point of
failure that is partially solved with a cluster of brokers.
Another drawback is that the peers need to know the
broker location; usually this information is provided by
an LDAP system or coded into the software. The first
solution introduces complexity into the system while
the second either reduces the final code portability or
introduces additional configuration information that
increases the maintenance costs.

2.2 Decentralized Broker-less Message
Oriented Middleware

In this approach there is no broker and all the system
peers collaborate in order to substitute the
functionalities of the broker. This is a typical behaviour
of P2P systems, in which actors discover and exchange
information with each other (See example of such a
system in Fig. 3).

Fig. 3 Broker-less publish subscribe architecture

The main disadvantage of the broker-less approach
is that the software that runs in both publishers and
subscribers machines is more complex and peers need
to “learn” the topology of the network if not initially
configured.

Mantaray [32] proposes a solution in which peers
discover information related to existing peers
subscription and the different available topics via a
multicast protocol, while the message delivery
communication is done via unicast connections. In
JXTA [2] peers find each other and the information
related to the existing topics via a pure unicast
communication and specific discovery protocols.

Our middleware solution based on RMM-JMS,
supports static topology configuration and discovery
that is done using unicast, whereas topic filtering, topic
mapping and message delivery is done with reliable
multicast protocol whenever the underline network
supports multicast.

In all multicasts based solutions, communication
between peers that live in different NAT domains and
behind Firewall requires some gateway bridge that act
as a relay.

3. RMM-JMS Broker / HTTP Bridge

RMM-JMS broker/bridge is built on top of RMM
protocol that allows hosts to reliably exchange data
messages over the standard IP multicast network (in
addition to the TCP unicast). RMM exploits the IP
multicast infrastructure to ensure scalable resource
conservation and timely information distribution with
reliability and traffic control added on top of the
standard multicast networking. Its services are built as
additional network layers on top of UDP/IP and
TCP/IP using a NAK based protocol that employs a

255255

fast message to packet mapping. It supports peer-to-
peer communication in both brokered and broker-less
modes and is singled out by its high performance
capabilities.

In a large system, like a Grid, which is composed of
a few LAN networks combined with gateways, direct
multicast is not supported. In RMM-JMS pub/subs
messaging system we implemented a broker/bridge for
transferring messages between the gateways and for
multicasting when possible.

The messaging broker/bridge, which receives all the
publications and subscriptions in the LAN, sends the
messages to the appropriate consumers in either
multicast or unicast depending on the network
configuration. The broker may receive messages from a
producer in either unicast or multicast delivery mode.

An important usage of the broker is LAN-WAN-
LAN bridging. In such configuration two separate
LANs, inside each of which IP multicast is available,
are connected via a WAN, where no IP multicast is
available. A broker-pair bridge, or broker/bridge for
short, is responsible for communicating a multicast (or
unicast) message sent in one LAN to a customer in the
other LAN. The broker to broker connection is
restricted to simple TCP tunnelling but subscriber in
each LAN can receive a multicast message sent from
the producer (in the local LAN) or a multicast message
from the broker (in the remote LAN).

The message producer uses multicast or unicast for
publishing. In the unicast mode, the JMS topics are
implemented over RMM queues, all with remote end-
point at the preconfigured bridge; the bridge's IP
address and listening port should be given. No
configuration has to be done for multicast publishing
and the consumer uses the topic name to figure out
which multicast group it has to join.

The broker initially listens for both producers and
subscribers. If it gets a publication message for which
no subscription has been made, it just drops it. If there
are subscribers to this message, it is queued and
eventually sent to each of the subscribers. No multicast
group is joined until subscriptions are done. Once a
topic is subscribed to, the broker joins the group on
which this topic may be multicast. When a message
with such a topic arrives, it is handled as before. Fig. 4
presents our broker/bridge in a LAN-WAN-LAN setup.

The broker/bridge configuration supports multicast
publication in each LAN, where some of the
subscribers listen to multicast in another LAN. In such
a configuration each bridge forwards to its peer the list
of topics for which it has client subscriptions. Thus,
only the appropriate topics information will flow
between the bridges. In this manner we limit network

traffic to the minimum in the slowest link. Moreover
we make certain that the bridge does not have to
process messages belonging to topics which no client is
interested, in a sense, each bridge views its peer as a
standard unicast subscriber.

RMM-JMS broker/bridge

client

RMM

RMM-JMS

client

RMM-JMS

RMM

RMM-BRGRMM

client

RMM

RMM-JMS

client

RMM-JMS

RMM

RMMRMM-BRG

LAN domainLAN domain

RMM-JMS broker/bridge

client

RMM

RMM-JMS

client

RMM-JMS

RMM

RMM-BRGRMM

client

RMM

RMM-JMS

client

RMM-JMS

RMM

RMMRMM-BRG

LAN domainLAN domain

RMM-JMS broker/bridge

client

RMM

RMM-JMS

client

RMM

RMM-JMS

client

RMM-JMS

RMM

client

RMM-JMS

RMM

RMM-BRGRMM RMM-BRGRMM

client

RMM

RMM-JMS

client

RMM

RMM-JMS

client

RMM-JMS

RMM

client

RMM-JMS

RMM

RMMRMM-BRG RMMRMM-BRG

LAN domainLAN domain

Fig. 4 RMM-JMS broker/bridge in a LAN-WAN-LAN setup

The broker listens on its default unicast address. If
so configured, it also joins a range or multicast groups.
It creates an RMM set of packet streams for each of the
unicast and multicast reception. An important stream is
the unicast only broker subscription queue. A typical
message on this queue is sent to the JMS client upon
creating a JMS topic subscriber. The client should than
open an RMM receive queue to receive feedback
messages. The two queues are opened on the same
connection, which is kept as long as the client's JMS
connection is not closed.

When a connection is first created, it is created in a
stopped state. This means that publications on this
topic will not be sent to the subscriber. To enable
message flow, as JMS dictates, the client should send
another message on the broker subscription queue, with
the directive “start”, and no other data. The flow will
be suspended upon sending of a “stop”; a “close” (or
reset on the connection) will cancel all subscription
associated with the connection. The client can also
send “unsubscribe” on a specific topic name.

To support subscriptions, the broker holds a list of
all the subscriptions with the queue associated with
each one of them. The broker gets all the publications
in its stream set receivers, and dispatches the messages
to all those subscribers with started connections.

To support the LAN-WAN-LAN bridge, we
configure each broker with the address of the peer
broker. When the broker starts it behaves as a bridge.
Finally, we enable the multicast receivers and
transmitters of the brokers, and add the rule that
messages received via multicast are sent only using

256256

unicast (no need to repeat messages which are multicast
anyway).

4. Experimental Results

In this section we present experimental results of our
message distribution system compared with the fastest
implementations existing in the market. We performed
two different sets of tests; the first set measured the
number of requests handled per second in different
configurations of different systems, whereas the second
set measured the latency introduced by our system.

4.1 The Systems Being Compared

For evaluating our RMM-JMS bridge pub/sub
middleware we compared it with the best available
systems with similar functionality. The JXTA one-to-
one messaging system, that has been exploited in [2]
and WS-Notification-based systems, like RGMA,
CIMA, and other SOAP based systems built on top of
WS technology, were evaluated in [7, 39] and the
results can be considered as upper bounds on their
performance. The authors of [3, 34] compared different
pub/sub message-based systems, with similar
functionality to RMM-JMS, and found that the
centralized Sun Message Queue [16], and the P2P
based Mantaray [32] have the best performance; thus,
we compared these two systems with our RMM-JMS.

4.2 Test-bed Hardware and Software

The hardware and software environment of our
experiments comprises 32 Dual Xeon 2.40GHz, 1.5GB
RAM machines running the CERN Scientific Linux
3.0.4 Operating System, with Kernel 2.4.21-
27.0.2.EL.cernsmp and Java 1.4.2_08-b03, linked to
each other by a 1 GB Ethernet switch. In this
environment we set up a variable number of peers,
written in Java, that communicate with each other using
the JMS-RMM library, SunMessageQueue3.6 and
Mantaray.

4.3 Testing Massage Rate

In this set of tests we compare the effective number
of messages that can be injected into each of the
systems. We first measure the cost of N to 1
communication (N varies from 1 to 30), where N
publishers communicate with one subscriber (Fig. 5a).
Next, we evaluate the opposite scenario where one
publisher publishes the same message to N (N varies
from 1 to 30) clients (Fig. 5b).

Fig. 5 (5a), (5b): Messages Rate Tests Scenarios

The subscriber in scenario 5a and the publisher in
scenario 5b were each running in a dedicated machine;
the other subscribers and publishers were uniformly
distributed among 30 different machines. Finally, the
broker of SunMQ3.6 was installed on an additional
dedicated machine. The tests have been repeated
varying the payload size of the exchanged messages.

No messages were lost during the tests and the
collected statistics on both the publishers’ and
subscriber’s sides showed the same results (per run).
Figures 6a, 6b, and 6c present the experimental results,
on the subscriber’s side, for test configuration 5a with
messages of size 100, 1000 and 10000 bytes,
respectively. From the figures, we can see that the
number of messages handled by the subscriber depends
on the messages size and it is independent (with high
significance) of the number of publishers. Finally, for
the RMM-JMS implementation the total throughput is
91 MBytes/sec when the system exchange messages of
1000 Bytes and it is 75 MBytes/sec in the case of
messages of 10000 Bytes. The bundling of messages in
RMM and the lack of a broker allow for a better system
performance since messages did not have to be routed
to an intermediate machine for reaching the subscriber.

Msg rate- msg size 100Bytes

1000

10000

100000

1000000

1 2 5 10 15 20 25 30

Number of Publishers

m
sg

/s
ec RMM

MQ3.6

Manta

Fig. 6a Message rate for varying number of publishers. Msg size

100 Bytes

The experimental results of test configuration 5b are
presented in Figures 7a, 7b, and 7c. Once again, no
messages were lost during the tests and the statistics
that were computed on both the publisher’s and
subscribers’ sides, showed the same results (per run).
The presented measures have been taken from the
publisher. As we can see in the plot of RMM the rate is
practically constant; this can be explained by the
parallelism of the multicast. In contrast, in a standard

257257

P2P and broker-less P2P implementations the rate
dropped exponentially with the number of subscribers
(we use logarithmic scale for the rate). We also note
that a broker-less implementation allow a better system
performance because messages are not routed to an
intermediate machine in order to reach the subscribers.

Msg rate- msg size 1000Bytes

1000

10000

100000

1 2 5 10 15 20 25 30

Number of Publishers

m
sg

/s
ec RMM

MQ3.6

Manta

Fig. 6b Message rate for varying number of publishers. Msg size

1000 Bytes

Msg rate- msg size 10000Bytes

1000

10000

1 2 5 10 15 20 25 30

Number of Publishers

m
sg

/s
ec RMM

MQ3.6

Manta

Fig. 6c Message rate for varying number of publishers. Msg size

10000 Bytes

Msg rate- msg size 100 Bytes

100

1000

10000

100000

1000000

1 5 10 15 20 25 30

Number of Subscribers

m
sg

/s
ec RMM

MQ3.6

Manta

Fig. 7a Message rate for varying number of subscribers. Msg size

100 Byte

We conclude that the multicast system, that is the
key feature of RMM, can be used for one-to-many data
delivery reaching a transfer rate of 69-80 MBytes/sec
per subscriber when the hardware can support it. The
maximum message exchange rate is on the order of
550000 messages/second. This number is remarkably

high compared with results that were achieved by
existing systems [2, 3, 4].

Msg rate- msg size 1000 Bytes

100

1000

10000

100000

1 5 10 15 20 25 30

Number of Subscribers

m
sg

/s
ec RMM

MQ3.6

Manta

Fig. 7b Message rate for varying number of subscribers. Msg size

1000 Bytes

Msg rate- msg size 10000 Bytes

100

1000

10000

1 5 10 15 20 25 30

Number of Subscribers

m
sg

/s
ec RMM

MQ3.6

Manta

Fig. 7c Message rate for varying number of subscribers. Msg size

10000 Bytes

4.4 Testing Round Trip Time (RTT)

The second set of tests measures the round trip time
for a message. In two different machines a publisher
sends a message to a given topic and a subscriber was
instructed to receive and send back the same message
to a different topic.

The publisher was listening for incoming messages.
We computed the average round trip time over 1000
samples. The chart in Fig. 8 presents the results for
messages of varying size. The results are compared
with the time needed for a simple ping between the two
machines. As we can see, for messages shorter than
10000 Bytes the experienced RTT is similar for RMM-
JMS and SunMQ3.6, while for bigger messages the
latency in SunMQ3.6 grows. This behaviour is
explained by the additional delay due to brokered
communication in SunMQ3.6. The Mantaray
implementation introduces 30 ms of minimum delay for
aggregating messages and saving time buffering
information. Finally, note that the ping measure
provides an asymptotic lower bound for such systems.
Software overhead in both the sender and receiver,
sides can explain the differences compared to RMM-

258258

JMS, this overhead increases consistently with the size
of the messages.

Fig. 8 Round trip time tests, experimental result

4.5 Experiments with a Gateway (Bridge)

In the following set of tests we measured the
effective number of messages that can be injected into
different systems in two scenarios: the first one
(RMM1B) is composed of one publisher that sends
messages to a Bridge that dispatches the messages to
all the connected subscribers; in the second one
(RMM2B) there is one publisher that sends messages
to a Bridge (B1) that forwards all its traffic to a second
Bridge (B2) whose task is to dispatch the messages to
all the connected subscribers. The two scenarios are
depicted in Fig. 9.

Fig. 9 The two brokered scenarios

The publisher and the subscribers were each running
in a dedicated machine. The bridges were installed on
two additional dedicated machines. The tests have been
repeated varying the payload size of the exchanged
messages as in section C.

Figures 10a, 10b, and 10c show in linear scale the
message rate on the subscribers’ side for both RMM
1B and RMM 2B scenarios. In these figures the values
of the message rate are compared with those obtained
in the previous test scenario (Section C), i.e. RMM-
JMS, Mantaray and Sun Message Queue 3.6.

It is worth to notice that the message rate of both
RMM 1B and RMM 2B remain above the rate
measured for Mantaray and Sun MQ; this is explained
by the small overhead that is introduced to RMM by
the broker that act mainly as a relay.

Msg rate- msg size 100 Bytes

100

100100

200100

300100

400100

500100

600100

1 5 10 15 20 25 30

Number of Subscribers

m
sg

/s
ec

RMM

MQ3.6

Manta

RMM 1B

RMM 2B

Fig. 10a Message rate for varying number of subscribers. Msg size

100 Bytes

Finally, the rate measured using one Bridge (RMM
1B) is higher than the rate measured using two Bridges
(RMM 2B) since the later one has an additional unicast
segment.

Msg rate- msg size 1000 Bytes

100

10100

20100

30100

40100

50100

60100

70100

80100

90100

1 5 10 15 20 25 30

Number of Subscribers

m
sg

/s
ec

RMM

MQ3.6

Manta

RMM 1B

RMM 2B

Fig. 10b Message rate for varying number of subscribers. Msg size

1000 Bytes

Msg rate- msg size 10000 Bytes

100

1100

2100

3100

4100

5100

6100

1 5 10 15 20 25 30

Number of Subscribers

m
sg

/s
ec

RMM

MQ3.6

Manta

RMM 1B

RMM 2B

Fig. 10c Message rate for varying number of subscribers. Msg size
10000 Bytes

5. Conclusions

From the results of our experiments, we conclude
that in an environment that must support the
publication of many messages to many subscribers and

RTT

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Messages Size

T
im

e
(m

S
ec

) RMM

MQ3.6

Manta

Ping

259259

whose size is typical for many instruments, it is better
to use a broker-less multicast approach whenever the
underlying system supports it.

10. References

[1] D.F. McMullen, T. Devadithya, K. Chiu, "Integrating

Instruments and Sensors into the Grid with CIMA Web
Services." Proceedings of the Third APAC Conference
on Advanced Computing, Grid Applications and e-
Research (APAC05). September 25-30, 2005. Gold
Coast, Australia.

[2] Daniel Brookshier, Darren Govoni, Navaneeth
Krishnan, and Juan Carlos Soto, published JXTA: Java
P2P Programming, Sams Publishing March 2002.

[3] Crimson consulting group, High-Performance JMS
Messaging A Benchmark Comparison of Sun Java
System Message Queue and IBM WebSphere MQ:
http://www.sun.com/software/products/message_queue
/wp_JMSperformance.pdf

[4] Geoffrey Fox and Shrideep Pallickara. "JMS
Compliance in the Narada Event Brokering System."
Proceedings of the International Conference on
Internet Computing (IC-02). June 2002. pp 391-402.

[5] WS Notification specification: also available at
http://www-
128.ibm.com/developerworks/webservices/library/spec
ification/ws-notification/

[6] R. Byro, B Coghlan, A Cooke, R Cordenonsi, L
Cornwall, M Craig, A Djaoui, S Fisher, A Gray, S
Hicks, S Kenny, J Leake, O Lyttleton, J Magowan, R
Middleton, W Nutt, D O'Callaghan, N Podhorszki, P
Taylor, J Walk, A Wilson R-GMA: Production
Services for Information and Monitoring in the Grid,
AHM2004, Nottingham, UK

[7] A. Slominski, M. Govindaraju, M. R. Head, K. Chiu,
M. J. Lewis, R. van Engelen, P. Liu, N Abu-Ghazaleh.
A Benchmark Suite for SOAP-based Communication
in Grid Web Services. In Proceedings of SC05
(Supercomputing): International Conference for High
Performance Computing, Networking, and Storage,
Seattle WA, November, 2005.

[8] Vivek Chopra, Amit Bakore, Ben Galbraith, Sing Li,
Chanoch Wiggers, Professional Apache Tomcat 5
Wrox May 2004

[9] Jini web Site: http://www.jini.org
[10] The NaradaBrokering Project web Site:

http://www.naradabrokering.org/
[11] JBossMQ web Site:

http://www.jboss.org/wiki/Wiki.jsp?page=JBossMQ
[12] Joram Project: http://joram.objectweb.org/
[13] OpenJMS Project: http://openjms.sourceforge.net/
[14] ActiveMQ Project: http://www.activemq.org/
[15] Arjuna Project: http://www.arjuna.com/
[16] Sun Message Queue Project:

http://www.sun.com/software/products/message_queue
/index.xml

[17] Francesco Lelli, Gaetano Maron, Salvatore Orlando
and Shlomit Pinter, Bringing instruments into a Grid:

an Empiric Approach, WSEAS Transactions on
Computers, Vol. 6, No 1, (January 2007), pp. 153-159.

[18] IBM Haifa Research Lab, Reliable Multicast
Messaging (RMM) Web site:
http://www.haifa.il.ibm.com/projects/software/rmsdk/c
ontact.html

[19] Yoav Tock, Nir Naaman, Avi Harpaz, and Gidon
Gershinsky, Hierarchical Clustering of Message Flows
in a Multicast Data Dissemination System, Proceedings
of the International conference on Parallel and
Distributed Computing and Systems (PDCS)
November 2005, Phoenix, USA

[20] UDDI Specification, Version 2.0, 3.0,
http://www.uddi.org/specification.html. 2005.

[21] GridCC Home Page: www.gridcc.org
[22] Business Process Execution Language for Web

Services version also available
at:http://www.128.ibm.com/developerworks/library/spe
cification/ws-bpel/

[23] SRM: Storage Management Working Group
http://sdm.lbl.gov/srm-wg/

[24] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L.
Liming, and S. Tuecke, GridFTP: Protocol Extensions
to FTP for the Grid, update January 2002. Also
available at: http://www-
fp.globus.org/datagrid/gridftp.html

[25] IBM MQ Series:
http://en.wikipedia.org/wiki/MQSeries

[26] elemenope project: http://www.elemenope.org/
[27] Fiorano MQ Project: http://www.fiorano.com/
[28] WebSphere MQ Everyplace project
[29] jtom project: http://www.jtom.de/
[30] Mom4j Project: http://mom4j.sourceforge.net/
[31] SwiftMQ project: http://www.swiftmq.com/
[32] Mantaray Project: http://www.mantamq.org
[33] JMS standard API: http://java.sun.com/products/jms/
[34] Krisoft Solution: JMS Performance Comparison (white

paper) also available at
http://hosteddocs.ittoolbox.com/krissoft102904.pdf

[35] AGATA Advanced Gamma-Tracking Array design
specification: also available at:
http://agata.pd.infn.it/Agata-proposal.pdf

[36] Sergio Cittolin, Wesley Smith, Joao Varella, Attila
Racz, Michel Della Negra, Alain Herve, CMS TDR
6.2, The TriDAS Data Acquisition project and High-
Level Trigger, CERN/LHCC, December 2002..

[37] Apache WSRF Project: http://ws.apache.org/wsrf/
[38] WSRF.NET Project:

http://www.cs.virginia.edu/~gsw2c/wsrf.net.html.
[39] F. Lelli, G. Maron, and S. Orlando, Improving the

Performance of XML Based Technologies by Caching
and Reusing Information, Proceeding of the
International Conference on Web Services (ICWS)
Chicago, September 2006.

[40] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S.
Orlando, A. Petrucci, S. Squizzato and S. Traldi. Instrument
Element: A New Grid Component that Enables the Control of
Remote Instrumentation. International conference on Cluster
Computing and Grid (CCGrid), Singapore May 2006.

260260

