
Controlling and Monitoring Devices with REST

Francesco Lelli and Cesare Pautasso

Faculty of Informatics
University of Lugano

via Buffi 13
6900 Lugano, Switzerland

firstname.lastname@lu.unisi.ch

Abstract. In this paper we apply the REST principles to the problem
of defining an extensible and lightweight interface for controlling and
monitoring the operations of instruments and devices shared on the Grid.
We integrated a REST Service in the Tiny Instrument Element (IE) that
has been used for an empirical evaluation of the approach demonstrating
that this implementation can coexist with a Web Service back-end and
be used in parallel where is needed. Finally we present a preliminary
performance comparison with the WS-* compliant implementation.
Keywords: Instrument Element, REST, Control and Monitor

1 Introduction

The remote control and monitoring of devices and experiments require many
interactions between the instruments and the computational Grid. Scientific
equipment must be accessed by running jobs that need to interact with the
instrument while performing some computation. These jobs are also interactive,
as the users need to be able to use them to monitor and steer the instrument op-
erations. In addition, in most demanding use cases, such as instruments for high
energy physics experiments, achieving the required performance and quality of
service guarantees represents an important challenge [1].

In the past few years modern web based companies offer multiple ways for ac-
cessing the services that they provide. The most popular approaches are based on
the Web Service technology stack or on Representational State Transfer (REST)
[2]. From a technical point of view both the approaches have strengths and weak-
nesses and the adoption of a particular solution is really use case dependent [3].

The REST architectural style has been introduced to give a systematic ex-
planation to the scalability of the HTTP protocol and the rapid growth of the
World Wide Web. Its design principles have been recently adopted to guide the
design of the next generation of Web services called RESTful Web services [4].
The benefits of REST lie in the simplicity of the technology stack required to
build a Web services and in the recognition that most Web services are indeed
stateful entities.

In this paper we investigate how to apply the REST design principles to
give a lightweight solution to the problem of monitoring and controlling scien-
tific instruments. We build a set of APIs for controlling and monitoring devices

consisting of an oculate selection of the resource URIs and a precise description
of their representation, as it is exchanged in the request and response of each
method applied to a URI published by the device. We integrated these APIs in
the Tiny Instrument Element (IE) [5], [6] that has been used for an empirical
evaluation of the approach. The Original Tiny IE Web Service interface expose
methods that are similar to the ones developed in international cooperations
like GridCC [7], RINGrid [8] and DORII [9]. Since that no standards have been
produced by the RISGE [10] Research Group yet we decided to demonstrate
the feasibility of a REST design by implementing all the methods that are ex-
posed by the original WS-* compliant interface used to monitor and control
instruments. Our tests and measurements indicate better performance than the
classical Web Service implementation. Finally it is worth noting that a WS-*
and a REST based implementation can coexist and be used in parallel where is
needed.

The rest of this paper is structured as follows: Section 2 presents a selec-
tion of works that are relevant for the purpose of this paper while Section 3
introduce our proposed REST APIs. Finally in Section 4 we presents some per-
formance comparison between Web Service (WS) and REST and in Section 5
we summarize our experience and we draw our conclusions.

2 Related Work and Background

Traditional efforts in providing remote access to equipment propose a common
instrument middleware based on Web Services using SOAP over HTTP as a
communication layer and specific WSDL interfaces [11], [1]. However modern
software products propose different approaches for consuming stateful resources.

In [12] Foster et al. present and compare the four most common techniques
for defining interactions among Web Service to support stateful resources (REST,
WS-RF [13], WS-Transfer and ”non standard”). REST is emerging as a lightweight
technique for the remote consumption of services in modern e-business applica-
tions. Therefore we decided to investigate if this approach may be adopted in the
context of accessing remote instruments. So far not much effort has been spent
in this task however the following contributions are relevant for this objective.

In [4] techniques on how to build RESTful Web Services are underlined and
a detailed comparison between REST and WS-* can be found in [3]. REST
has also started to make inroads in different application domains. In [14], for
example, a set of REST APIs for accessing mobile phones information such as
photos, tags and manipulating device properties is presented.

In this paper we present a definition of a RESTful service for accessing,
controlling, and monitoring remote instruments. Our proposed REST APIs (de-
scribed in Section 3) maintains all the functionality that was previously exposed
via a Web Service interface thus showing that REST can be a good example of
an alternative technology platform for instrument management. The rest of this
section continues with a description of the Resource Oriented Instrument Model

that we are considering (Section 2.1) and with a brief background description
about REST where we outline its most relevant features (Section 2.2).

2.1 Resource Oriented Instrument Model

Considering the heterogeneous nature of instruments, one current shortcoming
is that the applications that use them must have a complete operational model
of the instruments and sensors they work with.

We can consider a generic model for a device consisting of a collection of
parameters, attributes and a control model, plus an optional description language
[1]:

– Parameters: are variables on which the instrument configuration depends,
like range or precision values of a measure;

– Attributes: refer to the properties of the actual object that the instrument
is measuring, such as the values that are being measured;

– Finite State Machine: this defines a control model, which represents the
list of commands that the instrument can support. Commands are usually
related using a Finite State Machine but in principle different formalisms
(such as Petri Nets, Rule-based systems, etc.) may be adopted.

– XML-based description language that provide information about the
semantic of the particular instrument such as SensorML [15] or OWL [16]
etc.

The main difference between parameters and attributes concerns the access
patterns that should be supported to read their data values. While parame-
ters are typically read by polling, attributes should additionally support also an
event-based or stream-based publish/subscribe approach. Therefore, both push
and pull access patterns must be supported for some kinds of attributes.

This model is used for the representation of generic instruments. Our goal is
also to provide support for more complex systems, where devices are logically
(or physically) grouped into hierarchies for aggregating data and/ or distributing
commands in more convenient ways. Therefore a way to retrieve the topology of
the devices must be provided as well.

The code developed for controlling and monitoring devices is usually difficult
to develop and expensive to maintain especially when the underlying instrument
hardware is changed and/or improved. A primary design goal of this model is to
externalize the instrument description so that applications can build an opera-
tional model on the fly. This approach makes it possible to preserve investments
in codes as instrument hardware evolves and to allow the same code to be used
with several similar types of instruments. Different representations of this model
can be provided in order to let user decide the most convenient way for accessing
and controlling the physical instrument.

2.2 REST Background

In the following we give a quick overview over the design principles and con-
straints of the REST architectural style. For more information we refer the in-
terested reader to [2,4,17].

A RESTful service exposes its state, data, and functionality through the
resource abstraction. Each resource is identified by a Uniform Resource Identifier
(URI [18]). Its state can have one or more representations and can be handled
with a limited and predefined set methods. A resource can negotiate with clients
which representation format should be used to exchange data and also can inform
its clients about the supported methods. The set of methods that can be used
to manipulate and interact with a resource are the following ones.

– GET: retrieve the current state of a resource.
– PUT: update the state of a resource1.
– POST: create a resource within the current one.
– DELETE: delete a resource.
– OPTIONS: reflect upon which methods are allowed on a given resource.

These methods are commonly found in the HTTP protocol and carry addi-
tional semantics which helps to support stateless interactions (where each request
is self-contained) and idempotency (where requests can be repeated without
side-effects). The only method which is unsafe, i.e., cannot be retried without
side-effects, is POST.

Whereas — according to the uniform interface principle — the set of methods
provided by a resource if fixed to the previous ones, REST does not constrain
the set of resources that are published by a service. Thus, the expressiveness of
the interface lies in the selection of a URI naming scheme and in the definition
of the resource representations that are exchanged for each request method, as
opposed to the freedom of defining a specific set of methods for each service
interface, like in traditional Web services.

3 REST APIs for Remote Controlling and Monitoring
Instruments

In this section we apply the REST design guidelines to the definition of an API
to control and monitor instruments. We first define the set of resource URIs
(Section 3.1) and specify which of the GET, POST, PUT, and DELETE methods
can be applied. Then in Section 3.2 we define the resource representation formats
used to exchange data with an instrument.

This REST API has been directly implemented using the HTTP protocol,
which also provides security, access control, accounting, and exception signaling
where needed.
1 If a resource does not exists, create it.

3.1 Resource URI Design

In defining the URI for addressing instrument resources we follow this structure:

/Context/<id>/Instrument/<id>/<instrument-resource>

where /Context/<id> represents a configuration of the instrument itself, while
/Instrument/<id> represents a unique identifier of the instrument within the
instrument element. A different naming convention for representation of the
same concept may be adopted without changing the final result, however this
approach to the design of “nice” URIs is one of the most used [4]. Note that this
URI structure maintains the same structure and granularity of the addressing
information of the original Web Service interface. Therefore this interface does
not change the number of requests needed by the clients to perform the same
operations.

Finally <instrument-resource> represents a resource published by the in-
strument such as a Parameter, an Attribute or the State machine. As presented
in Section 2.1, an instrument must also allow introspection. To do so, for each
instrument we define the following URIs that clients can use to discover more
information about the instrument capabilities:

/Context/<id>/Instrument/<id>/Description
/Context/<id>/Instrument/<id>/Status
/Context/<id>/Instrument/<id>/FSM
/Context/<id>/Instrument/<id>/Parameters
/Context/<id>/Instrument/<id>/Attributes

where:

– Description: represents the description of the instrument in a given Lan-
guage (SensorML [15] or OWL [16] , plain text, etc)

– Status: get the current status of the instrument.
– Finite State Machine (FSM): inspect the finite state machine represen-

tation that is mapped as a set of transition plus an initial state
– Parameters: retrieve the list of parameters exported by the instrument
– Attributes: retrieve the list of attributes exported by the instrument

Few of these resources (like the FSM) may have a non trivial representation,
which will be defined in Section 3.2.

Tables 1 and ?? summarize the resources used for representing an IE and
give a detailed specification of which methods are allowed for each resource.

More in detail, the URI /Context/<id>/Instrument/< id > has the follow-
ing semantics when used in conjunction with each method:

– GET /Context/<id>/Instrument/< id > : Retrieve the list of instruments
controlled supervised by the given instrument-id

– PUT /Context/<id>/Instrument/< id > : If it is not already present, it
creates an instance of the given instrument-id by instantiating the proxy for
the real instrument. Otherwise it simply configures an existing proxy.

Table 1. REST Model for Controlling and Monitoring Instruments

Method URI

Description

GET /Context

return the list of possible instrument configurations or instruments topologies

GET /Context/<id>/

return the list of intruments that are accessible in a given configuration

GET /Context/<id>/Instrument/<id>/Description

Read the description of the device(s)

GET /Context/<id>/Instrument/<id>/Status

Read the current instrument status

GET /Context/<id>/Instrument/<id>/Parameters

Retrieve a list of parameters of the given instrument

GET/PUT/POST/DELETE /Context/<id>/Instrument/<id>/Parameter/<id>

Access the description of individual parameters

GET /Context/<id>/Instrument/<id>/Attributes

Retrieve a list of attributes of the given instrument

GET/PUT/POST/DELETE /Context/id/Instrument/<id>/Attributes/<id>

Access the description of individual attributes

GET /Context/<id>/Instrument/<id>/FSM

Read the finite state machine description of the instrument

GET /Context/<id>/Instrument/<id>/FSM/Transition/<id>

Read the description of a transition

GET /Context/<id>/Instrument/<id>/Commands

Read the description of a command

POST /Context/<id>/Instrument/<id>/Command/<id>

Execute a command

PUT /Context/<id>/Instrument/<id>/Transition/<id>

Execute a Transition

– DELETE /Context/<id>/Instrument/< id > : De-instantiate the proxy.

This approach to the modeling of instruments with resources has the following
implications:

– Clients can browse the possible set of configurations and the list of instru-
ments using the /Context and Context/<id> .

– Clients can get information and about the instruments using /Description,
/Status, /Parameters, /Attributes, /Commands and /FiniteStateMachine.

– Clients can use the URI /Context/<id>/Instrument/< id > for introspec-
tion and for instantiating the instrument proxy control structure.

– Clients can execute commands and trigger FSM transitions using the the
/Command/<id> and /Transition/<id> URIs.

– We decided to allow a POST and DELETE commands on Parameters and
attributes. However few instruments may not allow such operations. In this
case the error 405 (Method Not Allowed) can be used.

– Parameters, Attributes, Commands and FiniteStateMachine may return empty
values because not all instruments may implement all these functionalities.

– The URI structure map the model presented in Section 2.1 trying to mini-
mize the number of service requests needed in order to retrieve a conceptual
information.

– Few complex structures have been used for representing information related
to the instrument.

3.2 Resource Representation Format

Concerning the data, the API supports the exchange of data for different ap-
plications using formats such as ATOM, JSON, or binary JSON. ATOM is a
popular XML format that is commonly adopted in Web data feeds while JSON
is, compared to XML, a lightweight format for exchanging structured data [19].

In this paper we concentrate our attention in the XML representation of the
information but similar considerations could be repeated for different serializa-
tion formats.

What follows is an XML representation of a Parameter:
<Parameter>
. <Name>
. <Value>
. <Unit>
. <Min>
. <Max>
. <Description>
. <Parameter>
.
. </Parameter>
. <Parameter>
.

. </Parameter>
</Parameter>

We choose a complex XML representation of the information because param-
eters have the possibility of containing other parameters. Therefore a represen-
tation /Parameter/<id>/<Subparameter/<id> may cause a eccesive fragmen-
tation of the interface thus increasing the number of requests needed in order to
retrieve the complete parameter value.

Additional resources are represented as follows.

– Attributes: They are represented in a structure that is quite similar to the
one used by parameters

– Finite State Machine: It is represented as a set Transitions plus an initial
state. (<initialState> <Transition> <Transiton> ...)

– Transitions: are represented as a command, an initial state and an arriving
state. (<fromState> <toState> <Command>)

– Commands: are represented as a Name plus a set of Parameters. (<commandName>
<Parameter>)

3.3 Usage Scenarios

In this section we present few usage scenarios of the proposed REST APIs. Ser-
vice requests related to instrument introspection may require 1 or 2 calls while
the majority of the requests for controlling and monitoring the devices can be
handled in a single call. We can also note that in terms of the supported use
cases there are not many difference between the REST APIs and the original
WS-* APIs [1].

Controlling the List of available Instruments
An Operator can control the list of available Instruments sending a GET request
to the IE (URI: /Context) in order to retrieve the list of possible configurations
and use this information in order to access each context (URI: /Context/<id>).

Accessing to the current setting of an instrument
The Parameters of an Instrument represents the current setting of an instrument.
The list can be retrieved using a GET request to /Context/<id>/Instrument/<id>/Parameters
where /Instrument/<id> identify a device with configuration /Context/<id>/.

Retrieve the list of Instruments controlled by a given instrument
Assuming that the URI /Context/<id>/Instrument/<id> represents the instru-
ment supervisor, the list of controlled instrument can be retrieved using a GET
request to /Context/<id>/Instrument/<id>/ that return the list of URIs iden-
tifying the instruments controlled by the supervisor.

Retrieve the list of available commands of a given instrument
The URI /Context/<id>/Instrument/<id>/ addresses the instrument that we

want to use. We can retrieve the list of available commands sending a GET re-
quest at the URI /Context/<id>/Instrument/<id>/Command/.

Execute a Measure
We can execute a measurement command sending a POST request at the URI
/Context/<id>/Instrument/<id>/Command/measure the results of the mea-
sure can be fetched sending a GET request to the URI
/Context/<id>/Instrument/<id>/Attributes/<id>.

4 Performance Results

In this Section we present some preliminary benchmark tests. The goal is to
understand the scalability, the overhead and the flexibility our proposed REST
APIs compared with the existing Web Service (WS) implementation. We run
two different tests:

– Throughput: we measure the maximum number of requests per second that
can be handled by the server as it is saturated with requests from clients.

– Service Request Time: we measure the time needed by a single client in
order to perform a service invocation.

The experimental setup consists of a Tiny Instrument Element (IE) [5] con-
taining only one Instrument Manager controlling a dummy instruments which
can be configured using a variable number of parameters (10, 100, 1000). The
values of these parameters were automatically generated and fixed. One or more
clients were retrieving the parameters from the instrument using the Web Service
and the REST APIs.

The service was running on an Intel dual core 2.1 Ghz with 2 GB of RAM
with java 1.5. Apache Axis 1.4 [20] was used as WS provider while REST APIs
were implemented using the RESTlet framework [21]. Both alternatives used an
XML encoding of the parameters.

In Figure 1 the service response time for both WS and REST is presented,
while in Figure 2 the maximum number of request per second is shown. Each
measure has been taken 1000 times and in the plots Average, Minimum, Maxi-
mum and Standard Deviations are reported. We note that in each experienced
case (10, 100, 1000 Parameters) an IE based on REST offers a shorter response
time. In terms of the throughput, the WS performed better for small messages
(10 Parameters) while for big messages (1000 Parameters) REST achieved a
higher throughput. This is a counter intuitive behavior as the overhead of SOAP
should be higher fractionally for small messages. Moreover the experienced stan-
dard deviation of REST is larger than WS-*. This may be due to the RESTlet
framework [21] which begin to be stable but has not yet reached its maturity.

In order to provide a fair comparison, both WS and REST implementations
were configured to exchange XML data. However with REST it would have been
possible to use different resource representations, and – for example – choose
a more lightweight data format such as JSON [19], for which we expect an
additional reduction of the overhead.

1

10

100

1000

10 100 1000

Number of Parameters

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

st
s/

s)

1

10

100

1000

10 100 1000

Number of Parameters

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

st
s/

s)

Max Avg Min StdDev

Max Avg Min StdDev

0.1

1

10

100

1000

10 100 1000

Number of Parameters

R
e

sp
o

n
se

T
im

e
(m

s)

R
e

sp
o

n
se

T
im

e
(m

s)

0.1

1

10

100

1000

10 100 1000

Number of Parameters

(a) REST (b) Web Service

Fig. 1. Response Time Comparison

1

10

100

1000

10 100 1000

Number of Parameters

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

st
s/

s)

1

10

100

1000

10 100 1000

Number of Parameters

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

st
s/

s)

Max Avg Min StdDev

(a) Web Service (b) REST

Fig. 2. Throughput Comparison

5 Conclusion

In this paper we investigate the possibility of applying the REST design prin-
ciples to the problem of monitoring and controlling scientific instruments in
order to provide a lightweight solution. We present a set of APIs for controlling
and monitoring devices that follows the REST design principles. Our prototype
demonstrates the feasibility of implementing all the methods that are exposed by
the original WS-* compliant interface used to monitor and control instruments.
Both implementations can coexist and be used in parallel. Tests and measure-
ments of our prototype using XML payloads indicate better performance of
the RESTlet container as opposed to the Axis-based Web service implementa-
tion. We plan to further leverage the flexibility of REST by introducing more
lightweight data formats with the potential to further reduce the overhead of
the instrument manager interface. Also, the possibility of directly using HTTP
streams to perform measurement data streaming looks promising.

References

1. Lelli, F., Frizziero, E., Gulmini, M., Maron, G., Orlando, S., Petrucci, A., Squizzato,
S.: The many faces of the integration of instruments and the grid. Int. J. Web
Grid Serv. 3(3) (2007) 239–266

2. Fielding, R., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2(2) (2002) 115–150

3. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web
Services: Making the Right Architectural Decision. In: 17th International World
Wide Web Conference (WWW2008), Beijing, China (April 2008) 805–814

4. Richardson, L., Ruby, S.: RESTful Web Services: Web Service for Real World.
O’Reilly (May 2007)

5. Tiny Instrument Element Project: http://instrumentelem.sourceforge.net/

6. Lelli, F., Pautasso, C.: The Tiny Instrument Element Project. in proc of 4th
International Conference on Grid and Pervasive Computing (GPC 2009) (May
2009)

7. GridCC Project Web Site: http://www.gridcc.org/

8. RINGrid Project web site: http://www.ringrid.eu/

9. DORII Project web site: http://www.dorii.eu/

10. Remote Instrumentation Services In Grid Environment: http://forge.

gridforum.org/sf/projects/risge-rg

11. McMullen, D., Devadithya, T., Chiu, K.: Integrating Instruments and Sensors into
the Grid with CIMA Web Services. Proceedings of the Third APAC Conference
on Advanced Computing, Grid Applications and e-Research (APAC05) (September
2005)

12. Foster, I.T., Parastatidis, S., Watson, P., Mckeown, M.: How do I model state?:
Let me count the ways. Commun. ACM 51(9) (2008) 34–41

13. OASIS: Web Services Resources Framework (WSRF 1.2). (April 2006) http://

www.oasis-open.org/committees/wsrf/.
14. Riva, C., Laitkorpi, M.: Designing Web-Based Mobile Services with REST. In:

Proc. of Standard Performance Evaluation Corporation (SPEC) Benchmark Work-
shop. (January 2009)

http://instrumentelem.sourceforge.net/
http://www.gridcc.org/
http://www.ringrid.eu/
http://www.dorii.eu/
http://forge.gridforum.org/sf/projects/risge-rg
http://forge.gridforum.org/sf/projects/risge-rg
http://www.oasis-open.org/committees/wsrf/
http://www.oasis-open.org/committees/wsrf/

15. OGC Sensor Web Enablement:: www.opengeospatial.org/functional/page=swe

16. Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language
Guide,W3C. also available at http://www.w3.org/TR/owl-guide/

17. Fielding, R.: A little REST and Relaxation. The International Conference on Java
Technology (JAZOON07), Zurich, Switzerland. (June 2007) http://www.parleys.
com/display/PARLEYS/A%20little%20REST%20and%20Relaxation.

18. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
generic syntax. IETF RFC 3986. (January 2005)

19. Crockford, D.: JSON: The fat-free alternative to XML. In: Proc. of XML 2006,
Boston, USA (December 2006) http://www.json.org/fatfree.html.

20. Graham, S., Simeonov, S., Boubez, T., Daniels, G., Davis, D., Nakamura, Y.:
Building, Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI. Sams (December 2001)

21. RESTlet framework: http://www.restlet.org/

www.opengeospatial.org/functional/page=swe
http://www.parleys.com/display/PARLEYS/A%20little%20REST%20and%20Relaxation
http://www.parleys.com/display/PARLEYS/A%20little%20REST%20and%20Relaxation
http://www.json.org/fatfree.html
http://www.restlet.org/

	Controlling and Monitoring Devices with REST
	Francesco Lelli cl@@auth, Cesare Pautasso

